
The dual approach to non-negative super-resolution:
perturbation analysis

Stéphane Chrétien1,2,3, Andrew Thompson2, and Bogdan Toader4

1Laboratoire ERIC, Université Lyon 2, Bron, France
2National Physical Laboratory, Teddington, UK

3Alan Turing Institute, London, UK
4Department of Statistics and Data Science, Yale University, US

July 6, 2023

Abstract

We study the problem of super-resolution, where we recover the locations and weights of non-negative
point sources from a few samples of their convolution with a Gaussian kernel. It has been shown that
exact recovery is possible by minimising the total variation norm of the measure, and a practical way of
achieve this is by solving the dual problem. In this paper, we study the stability of solutions with respect
to the solutions dual problem, both in the case of exact measurements and in the case of measurements
with additive noise. In particular, we establish a relationship between perturbations in the dual vari-
able and perturbations in the primal variable around the optimiser and a similar relationship between
perturbations in the dual variable around the optimiser and the magnitude of the additive noise in the
measurements. Our analysis is based on a quantitative version of the implicit function theorem.

1 Problem setup
In the study of non-negative super-resolution, the aim is to estimate a signal x which consists of a number
of point sources with unknown locations and non-negative magnitudes, from only a few measurements of the
convolution of x with a known convolution kernel ϕ. This is a problem that arises in a number of applications,
for example fluorescence microscopy [1], astronomy [2] or ultrasound imaging [3]. In such applications, the
measurement device has a limited resolution and cannot distinguish between distinct point sources that are
close to each other in the input signal x. This is often modelled as a deconvolution problem with a Gaussian
kernel.

Specifically, let x be a non-negative measure on I “ r0, 1s consisting of k unknown non-negative point
sources:

x “

k
ÿ

i“1

aiδti ,

with ai ą 0, for all i “ 1, . . . , k, and let yj be the possibly noisy measurements obtained by sampling the
convolution of x with a known kernel ϕ at locations sj :

yj “

ż

I

ϕpt´ sjqxpdtq ` wj “

k
ÿ

i“1

aiϕpti ´ sjq ` wj , (1)

for all j “ 1, . . . ,m or, in vector notation:

y “

k
ÿ

i“1

aiΦptiq ` w, (2)
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where

y “ ry1, . . . , ymsT , (3)

Φptq “ rϕpt´ s1q, . . . , ϕpt´ smqsT , (4)

w “ rw1, . . . , wmsT . (5)

Of particular interest is the case of the Gaussian kernel:

ϕptq “ e´t2{σ2

, (6)

where σ is assumed to be known to the practitioner.
In the setting where the measurements y are exact, namely when w “ 0, the signal x can be recovered

by solving the following problem:

min
xě0

}x}TV subject to y “

ż

I

Φptqxpdtq, (7)

where } ¨ }TV is the Total Variation (TV) norm for Radon measures defined as

}x}TV “ sup

"
ż

ψdx; ψ P CpIq, }ψ}8 ď 1

*

. (8)

When additive measurement noise is present, the signal x can be recovered as the solution to

min
xě0

›

›

›

›

y ´

ż

I

Φptqxpdtq

›

›

›

›

1

such that }x}TV ď Π, (9)

where Π plays the role of the regularisation parameter. Opting for an ℓ1-type fidelity term is a reasonable
choice in a robust estimation framework, as discussed in e.g. [4].

In the context of problems (7) and (9), in this manuscript we give bounds on the errors in the source
locations ttiu

k
i“1 and weights taiu

k
i“1 as a function of the errors in the dual variable when solving the dual

problem, which we then extend to the case when the measurements are corrupted by additive noise, where
we give an exact dependence of the error in the dual variable on the level of noise. A subset of the results
in this paper have been presented in the conference article [5].

The problem of super-resolution has been studied extensively in the literature since the seminal paper [6],
which addressed the case of complex amplitudes. Since the original contributions of Candès and Fernandez-
Granda, there have been numerous follow-up results such as the ones by Schiebinger et al. [7], Duval and
Peyré [8], Denoyelle et al. [9], Bendory et al. [10], Azaïs et al. [11], Eftekhari et al. [12, 13] and many
others. For instance, the authors of [7] consider the noiseless setting by taking real-valued samples of y with
a more general choice of ϕ (such as a Gaussian) and also assume x to be non-negative as in the present work.
Their proposed approach again involves TV norm minimization with linear constraints. Bendory et al. [10]
consider ϕ to be Gaussian or Cauchy, do not place sign assumptions on x, and also analyze the TV norm
minimization with linear fidelity constraints for estimating x from noiseless samples of y.

1.1 Main goals of our study
A standard way to approach problem (7) is by considering its dual:

max
λPRm

yTλ subject to λTΦptq ď 1 @t P I, (10)

which is a finite-dimensional problem with infinitely many constraints, known as a semi-infinite program
(SIP). One of the main motivations for the study of the dual problem stems from the fact that this dual
problem is finite (and even sometimes low) dimensional and as such, is amenable to efficient optimisation al-
gorithms such as exchange methods [14] or sequential quadratic programming [15]. Moreover, the constraints
λTΦptq ď 1,@t P I can be handled using an exact penalty approach, i.e. can be reformulated as

min
λPRm

´yTλ` C ¨ max

"

sup
s

´

λTΦpsq ´ 1
¯

, 0

*

, (11)
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Figure 1: (a) Solution and dual certificate obtained using the level bundle method. (b) Decrease in optimality
gap with iteration number.

for a penalty parameter C, thus making the problem amenable to non-smooth optimisation algorithms
such as bundle methods [16, 17]. To illustrate the use of such methods for solving the dual problem, we
present the result of an experiment in which we use the level bundle method [16] to solve a continuous
sparse inverse problem of the kind introduced in this section. Here a signal (consisting of five spikes with
locations t0.2, 0.4, 0.6, 0.7, 0.75u each with amplitude 1) is convolved with a Gaussian kernel ϕptq “ e´t2{σ2

with σ “ 0.1 and sampled at 15 equispaced points on r0, 1s. The dual problem is solved using the level bundle
method, and the spike locations are identified from the global maximisers of the dual certificate obtained.
Figure 1(a) displays the recovered solution using the level bundle method along with the corresponding dual
certificate, showing that the method is able to recover the signal to high accuracy even though the minimum
separation is somewhat small (0.05). Figure 1(b) shows the speed of convergence in terms of the decrease in
the optimality gap (the model gap - see Appendix B). We observe linear convergence in practice.

Solving the dual problem for λ leads to the dual certificate, a function of the form qpsq “
řm

j“1 λjϕps´sjq

(defined in Section 2), whose global maximisers are the source locations ttiu
k
i“1. The weights taiu

k
i“1 are

then found by solving a least squares problem using the measurements and the source locations. Using the
idea of dual certificate, our perturbation results are quite intuitive: the locations of the global maximisers
of the dual certificate are perturbed when λ is perturbed, which leads to perturbed source locations ti.
Providing a quantitative analysis of the recovery error as a function of the error in the dual solution is the
main goal of the present work. In addition, we extend the analysis to the noisy setting, where we give the
explicit dependence of the error of the dual solution on potential additive noise in the measurements.

1.2 Our contributions
In this paper, we restrict our study to the case of Gaussian kernels. Our main results are the following

• In the setting of exact measurements, we provide bounds on how far the estimated locations tk and
magnitudes ak are from their true values as the dual variable λ is perturbed from its optimal value λ˚

when x is recovered by solving the dual problem (10). These bounds are given in Theorems 2 and 4.
These give us an insight into the size of the error in the locations and magnitudes when we apply an
optimisation algorithm to the dual of the super-resolution problem.

• In the setting of measurements corrupted by additive noise, we leverage the perturbation bounds
obtained for the noiseless case in order to study the impact of additive noise in the observations, when
the signal is recovered by solving the alternative problem (9). For this purpose, we make precise links
between the dual solutions to (9) and (10). Our main result for this noisy setup is Theorem 8, where
we give an explicit bound on the impact of noise on the estimation of the dual solution to (10). This
makes again the case for the study of (10) under perturbation.
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While the bounds given in these theorems apply only to the case when the convolution kernel is Gaussian,
the same techniques can be applied to obtain perturbation bounds for other kernels, with a few differences
in the way some sums in the proofs are bounded, which would would be specific to the kernel used.

1.3 Comparison with previous work
1.3.1 Alternative formulations for the noiseless setting

For the particular case of non-negative x, Boyd et al. [18] proposed an improved Frank-Wolfe algorithm
in the primal. In certain instances, for e.g., with Fourier samples (such as in [6, 19]), the dual, which is
a SIP, can also be reformulated as a semi-definite program (SDP). From a practical point of view, SDP is
notoriously slow for even moderately large number of variables. The algorithm of [18] is a first order scheme
with potential local correction steps, and is practically more viable.

As already mentioned, the main reason we advocate for using the dual problem (10) is that exact penalty
can be used in order to reformulate the dual problem as a non-smooth minimisation problem for which
methods such as bundle methods [16], [20] are efficient in practice. To the best of our knowledge, there
is no analysis of the impact of obtaining approximate solutions of the dual on the quality of the recovered
locations.

1.3.2 The penalised least squares approach

The approach adopted in [8, 9] is to solve a least-squares-type minimization procedure with a TV norm based
penalty term (also referred to as the Beurling LASSO (for example [21])) for recovering x from samples of
y. The approach in [22] considers a natural finite approximation on the grid to the continuous problem, and
studies the limiting behaviour as the grid becomes finer; see also [23]. These works develop a perturbation
analysis which is different from ours since it applies to specific types of perturbations of a different problem
(ℓ2 vs. ℓ1 type fidelity terms), and do not provide precise quantitative dependencies with respect to all the
parameters of the problem.

1.3.3 The Prony/Matrix Pencil approach

Another efficient approach is the one of [24] based on the original work of Hua and Sarkar [25] using a
Matrix Pencil approach, and recently extended to the multi-kernel setting in [26]. Perturbation analysis of
the Matrix Pencil approach is provided in [24]; see also [26] for a more detailed exposition of these results
with the correct order of dependencies. The reason we develop an analysis of the dual problem (10) here
is that it easily extends to the multidimensional setting as well, at least for small dimensions. In contrast,
the Matrix Pencil method, although very efficient in one dimension, becomes much more involved in several
dimensions [27].

1.4 Plan of the paper
We start by presenting the noise-free perturbation results related to problem (10) in Section 2, followed by
the perturbation results in the setting when the measurements are corrupted by noise in Section 3. The
proofs of our results are given in Section 4 and we show numerical experiments to verify the validity of our
results in practice in Section 5. Lastly, we conclude the paper in Section 6.

2 Bound on the error as λ is perturbed – the noise-free case
In this section we present our first main results, namely two theorems that give bounds on the perturbations
around the source locations ti and the magnitudes ai respectively, as the dual variable is perturbed away
from the optimiser λ˚, when the convolution kernel is a Gaussian with known width σ as defined in (6).

First, let us briefly give an informal statement of the main results in this section.

Informal Theorem. (Stability of primal recovery) Let λ˚ P Rm be a solution of the dual program (10)
with ϕ Gaussian and λ a perturbation of λ˚ in a ball of radius δλ, given in Theorem 2 and let t˚,a˚ be the
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vectors of source locations and weights in the true signal x and t̃, ã respectively their perturbations due to λ.
Then, the error between t˚ and t̃ is bounded by:

}̃t ´ t˚}2 ď
?
kCt˚ }λ´ λ˚}2. (12)

Moreover, if the above error is bounded by δt, given in Theorem 4, then the error between a˚ and ã˚ is
bounded by:

}ã ´ a˚}2 ď Ca˚ }t̃ ´ t˚}2 `Op}t̃ ´ t˚}22q. (13)

As the two error bounds above are derived independently using different ideas, we will discuss them
individually. Before giving the exact statement of each theorem, we define the concept of dual certificate,
which plays an important role throughout this paper.

Definition 1. (Dual certificate) Consider a solution λ˚ of the dual problem (10) or (27). Then a dual
certificate is a function of the form

qptq “

m
ÿ

j“1

λ˚
j ϕpt´ sjq “ λ˚T

Φptq, (14)

which satisfies the conditions:

qptiq “ 1, @i “ 1, . . . , k, (15)
qptq ă 1, @t ‰ ti,@i “ 1, . . . , k. (16)

The idea of dual certificate is common in the super-resolution literature, and we know that the global
maximisers of qptq correspond to the source locations ttiu

k
i“1 (see, for example [6, 7, 13], Once these are

found, amplitudes taiu
k
i“1 are obtained by solving a linear system.

We are now ready to discuss the perturbation results in the noise-free setting. In the following theorem,
we consider the dual (10) of (7) and quantify how the source locations given by the global maximisers of the
dual certificate formed by the dual solution λ˚ are affected by perturbations of λ˚.

Theorem 2. (Dependence of |t´ t˚| on }λ´ λ˚}2) Let λ˚ P Rm be a solution of the dual program (10)
with ϕ Gaussian as given in (6) such that the the dual certificate qpsq defined in (14) satisfies conditions
(15) and (16), λ a perturbation of λ˚ in a ball of radius δλ and t an arbitrary local maximiser of qλpsq “
řm

j“1 λjϕps ´ sjq. Note that, for λ “ λ˚, the corresponding local (and global) maximiser t˚ of qλ˚ “ q is

a true source location in ttiu
k
i“1. Let R “

}λ˚
}2

σ and c « 3.9036 a universal constant. If the radius δλ is
bounded by

δλ ď
|q2pt˚q|2σ3

?
e

4
?
2 p2 ` cRqm

, (17)

then
|t´ t˚| ď Ct˚ }λ´ λ˚}2, (18)

where

Ct˚ “
1

4 ` cR

«

1 `
2
?
2mp2 ` cRq

|q2pt˚q|
?
e

ff

. (19)

(20)

Proposition 3. (Simplified Ct˚) Under the conditions of Theorem 2, the constant Ct˚ can be further
bounded by:

Ct˚ ă
1

4
`

2
?
2

?
e

¨

?
m

|q2pt˚q|
. (21)

5



The proofs of Theorem 2 and Proposition 3 are given in Section 4.1. As a brief summary, Theorem 2
is proved by applying the implicit function theorem to the function F pt, λq “ q1ptq, where qptq is the dual
certificate given in Definition 1, since we know that F pt˚, λ˚q “ 0. This allows us to express t as a function
tpλq in a neighbourhood of pt˚, λ˚q, and a quantitative version of the theorem [28] gives an explicit expression
for Bλtpλq and the neighbourhood in terms of the derivatives of F . By bounding this derivative and the
neighbourhood and then applying a truncated Taylor expansion to tpλq, we obtain the result of Theorem 2.

One of the main conclusions which can be drawn from this result is that the primal spike location error is
controlled in l8, but degrades as a function of the number of measurements in the order of

?
m. Alternatively,

we can write (18) in terms of the ℓ2 norm of the error between the vector of true source locations t˚ and the
perturbed source locations t̃:

}̃t ´ t˚}2 ď
?
kCt˚ }λ´ λ˚}2.

Of crucial importance is the curvature of the dual certificate at the true solution: the flatter the certificate,
the worse the estimation error. Our theorem also gives important information about the accuracy in the dual
variable required to guarantee our upper bound on the error of recovery. This accuracy is of the inverse order
of the number of measurements, which is quite a stringent constraint. Both the m and the

?
m factors are a

consequence of the way we bound sums of shifted copies of the kernel, namely
řm

j“1 ϕpt´sjq ď mmaxtPR ϕptq.
Given the fast decay of the Gaussian, it is clear that this is not a tight bound. However, any bound would
reflect the density of samples close to each source location.

We will now give a result regarding the perturbation of the magnitudes ai when λ˚ is perturbed. Let Φ
be the matrix whose entries are defined as

Φij “ ϕptj ´ siq, (22)

and t˚ and a˚ the vectors of source locations and weights:

t˚ “ rt1, . . . , tksT , a˚ “ ra1, . . . , aksT .

When we solve (10) exactly, we obtain the source locations by finding the global maximisers of qpsq. Then,
the vector of weights a˚ is found by solving the system

Φa “ y.

When the source locations are perturbed, we denote the resulting perturbed data matrix by:

Φ̃ “ Φ ` E, (23)

and we calculate the vector of perturbed weights ã as the solution of the least squares problem

min
a

}Φ̃a ´ y}2. (24)

The following theorem, proved in Section 4.2, gives a bound on the error }a˚ ´ ã}2 between the vector of
true weights a˚ and the vector of weights ã obtained by solving the least squares problem (24) with the
perturbed matrix Φ̃, as a function of the error }t̃ ´ t˚}2 between the perturbed source locations t̃ and the
true source locations t˚.

Theorem 4. (Dependence of }ã´a˚}2 on }̃t´t˚}2) Let t˚ P r0, 1sk be the vector of true source locations,
t̃ P r0, 1sk the perturbed source locations in a ball of radius δt, a˚ the vector of true weights and ã the vector
of perturbed weights obtained by solving problem (24). If the radius δt is bounded by:

δt ă
σ2σmaxpΦq

4e4{σ2?
m

¨

˝

d

1 `
σ2
minpΦq

σ2
maxpΦq

´ 1

˛

‚, (25)

where σmaxpΦq, σminpΦq are the largest and respectively smallest singular values of the matrix Φ defined in
(22), then:

}ã ´ a˚}2 ď Ca˚e
4
σ2 maxj |t̃j´tj |

}t̃ ´ t˚}2 `Op}t̃ ´ t˚}22q, (26)

where
Ca˚ “

4
?
m}a˚}2

σ2σminpΦq
.

6



Note that we write the Op}t̃´ t˚}22q term in the bound above in order to simplify the presentation of the
result. We can, however, calculate the constants corresponding to the higher order terms in the bound by
using the inequality (123) in the proof of Theorem 4 in Section 4.2. For example, the constant in the second
order term is equal to C2

a˚ {}a˚}2
“

1 ` 2σ2
maxpΦq{σ2

minpΦq
‰

.

3 Bound on }λ ´ λ˚}2 in terms of the noise w

In this section we assume that the measurements are corrupted by additive noise and we give a result where
we bound the perturbation in the dual variable λ around the minimiser λ˚ as a function of the noise w in
the measurements. Specifically, the noisy measurements are defined as in (1):

yj “

ż

I

ϕjptqxpdtq ` wj “

k
ÿ

i“1

aiϕjptiq ` wj ,

for wj ‰ 0 and j “ 1, . . . ,m.
The aim is to estimate how the source locations ttiu

k
i“1 and weights taiu

k
i“1 are affected by the additive

noise w in the measurements around the solution of the problem. In the previous section we have established
how the source locations and weights are perturbed around their true values as the dual variable λ is
perturbed around its optimal value λ˚. In the noisy setting, we want to establish a precise quantitative
relationship between the perturbations of λ around λ˚ and the magnitude of the noise.

Before we state the main result, which gives a relationship of this kind, first we need to describe the exact
mathematical setting under which the result holds. Then we introduce the function F̄ in (39) to which we
apply the implicit function theorem, whose Jacobian is crucial for this result.

In order to account for noise in the measurements, we consider a slightly modified version of the dual
problem (10). To be specific, we use an additional box constraint on the dual variable λ and obtain the dual
problem:

max
λPRm

yTλ such that λTΦptq ď 1, @t P I,

and }λ}8 ď τ, (27)

which is the dual of (9) and whose derivation is given in Appendix A. The parameter τ is the inverse of the
Lagrange multiplier corresponding to the constraint in (9), and therefore it plays the same regularisation role
as Π. Looking at the specific formulation of the primal problem (9), we can see that it takes measurement
noise into account by doing ℓ1 minimisation of the error instead of requiring the measurements to be satisfied
exactly.

To motivate the exact form of the function F̄ in (39) to which we apply the implicit function theorem to
obtain the perturbation result from Theorem 8, consider the exact penalty formulation of (27):

min
λPRm

ΨΠpλq such that }λ}8 ď τ, (28)

where

ΨΠpλq “ ´yTλ` Π ¨ max

$

&

%

sup
s

¨

˝

m
ÿ

j“1

λjϕps´ sjq ´ 1

˛

‚, 0

,

.

-

. (29)

For a large enough value of Π, a solution to (28) which satisfies the constraints in (27) is also a solution of
(27) (see, for example, Section 1.2 in [20]). This is a non-smooth optimisation problem and its solution can
be found by using any method that relies on calculating subgradients, for example the level method [16].

A subgradient of ΨΠpλq has the form:

BΨΠ “

$

’

’

&

’

’

%

´y ` Π
řk1

i“1 νigps˚
i q, pν1 ` . . .` νk1 “ 1q if sups

řm
j“1 λjϕps´ sjq ą 1,

´y ` Π
řk1

i“1 νigps˚
i q, pν1 ` . . .` νk1 ď 1q if sups

řm
j“1 λjϕps´ sjq “ 1,

´y, if sups
řm

j“1 λjϕps´ sjq ă 1,

(30)
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where ts˚
i uk

1

i“1 are the global maximisers of the function
řm

j“1 λjϕps ´ sjq, the vectors gpsq are of the form
gpsq “ rϕps ´ s1q, . . . , ϕps ´ smqsT and νi ě 0 for all i “ 1, . . . , k1. Note that here we apply the formula for
the subgradient of the max function and for the sup function (see for example [20]). The coefficients in the
convex combination from the formula for the subgradient of the max function with zero account for the case
when ν1 ` . . .` νk1 ă 11.

As in the noise-free setting, we assume here that the dual solution λ˚ forms a dual certificate, namely
the function qpsq as defined in (14) satisfies conditions (15) and (16). Then, the subdifferential at λ˚ has
the form:

BΨΠpλ˚q “ ´y ` Π
k
ÿ

i“1

νigptiq, (31)

where ttiu
k
i“1 are the source locations, so the optimality condition for (28):

0 P BΨΠpλ˚q, (32)

is equivalent to:

y “ Π
k
ÿ

i“1

νigptiq, (33)

for some ν1, . . . , νk ě 0 with ν1 ` . . . ` νk ď 1 and for w “ 0. Note that, given the definition of y from (1),
the optimality condition (33) is satisfied for

νi “
ai
Π
, @i “ 1, . . . , k, (34)

wj “ 0, @j “ 1, . . . ,m, (35)

where in order to satisfy ν1 ` . . .` νk ď 1, we need Π such that:

Π ě a1 ` . . .` ai, (36)

which is the same as the constraint in (9).
Motivated by the above reasoning, we now want to apply the quantitative implicit function theorem, as

given in [28], to a function F of the form:

F prλ, νsT , wq “

k
ÿ

i“1

aiΦpt˚i q ´

k
ÿ

i“1

νiΦptipλqq ` w, (37)

where we know that F prλ˚, asT , 0q “ 0. For the sake of simplicity, we include the parameter Π in the
coefficients νi, so in the second sum in F each νi actually corresponds to Πνi, and ν1 ` . . .` νk ď Π rather
than ν1 ` . . .` νk ď 1.

However, note that F : Rm`k ˆRm Ñ Rm and in order to apply the implicit function theorem to obtain
the dependence of the first argument of F as a function of the second argument, it is required that spaces of
the first argument, the second argument and the codomain of F have the same dimension. To overcome this
issue, we assume that the solution we work with has a few particular properties, since the dual certificate,
given in Definition 1, is not unique in general. As before, we will assume that the solution λ˚ to the dual
problem (27) satisfies the dual certificate condition. In addition, we assume the existence of a solution λ̄˚ of
(27) as follows:

Definition 5. Let λ˚ P Rm be a solution to the dual problem (27) with m´k entries on the boundary of the
box constraint of (27) i.e. there exist indices γ1, . . . , γm´k P t1, . . . ,mu such that λ˚

γj
“ ˘τ , j “ 1, . . . ,m´k.

Then we define λ̄˚ P Rk to be the vector that consists of the non-fixed entries of λ˚, in the same order, and
λ̄ P Rk a perturbation of λ̄˚.

1More specifically, both functions in the max attain their maximum, so we have that

BΨπ “ ´y ` Π

„

α1B sups

´

řm
j“1 λjϕps ´ sjq ´ 1

¯

` α2B0

ȷ

, with α1, α2 ą 0 and α1 ` α2 “ 1, and therefore BΨπ “ ´y `

Π
řk1

i“1 α1ν1
igps˚

i q, with ν1
1 ` . . . ` ν1

k1 “ 1 and 0 ď α1 ď 1.

8



In practice, such a solution λ̄˚ would be achieved due to the complementarity conditions at optimality
corresponding to the box constraint }λ} ď τ . Similarly, we define a vector consisting of 2k entries of Φptq
in (4).

Definition 6. Let θ :“ tθ1, . . . , θ2ku Ă t1, . . . ,mu. Then we define Φ̄θptq to be the vector consisting of the
entries of Φptq in (4) corresponding to the indices in θ:

Φ̄θptq :“ rϕpt´ sθ1q, ϕpt´ sθ2q, . . . , ϕpt´ sθ2kqsT . (38)

We will also use Φ̄ptq to denote Φ̄θptq when the specific choice of θ is not relevant in the context.

Lastly, given the definitions of λ̄ and Φ̄θptq above, we define the following function to which we will be
able to apply the implicit function theorem:

Definition 7. Let λ˚ P Rm be a solution of (27) with m ´ k fixed entries and λ̄˚ P Rk consisting of the
non-fixed entries of λ˚, as given in Definition 5, and let Φ̄θptq be given as in Definition 6 for an index set θ of
2k indices between 1 and m. Then, for the perturbation λ̄ of λ̄˚, we define the function F̄ : R2k ˆR2k Ñ R2k

as:

F̄ prλ̄, νsT , wθq “

k
ÿ

i“1

aiΦ̄θpt˚i q ´

k
ÿ

i“1

νiΦ̄θptipλ̄qq ` wθ, (39)

where tipλ̄˚q “ t˚i , for i “ 1, . . . , k, are the source locations corresponding to λ˚ and wθ P R2k contains the
entries of the noise vector w P Rm corresponding to the indices in θ.

We can now state the main result of this section, namely a bound on the perturbation of λ˚ (or more
specifically λ̄˚) as a function of the measurement noise. The proof is given in Section 4.3.

Theorem 8. (Dependence of }λ´ λ˚}2 on the noise w) Let λ˚ P Rm be a solution to the dual problem
(27) with w “ 0 , namely the optimal solution of (27) with noiseless measurements, which satisfies the
conditions in Definition 5, and the vector λ̄˚ P Rk of non-fixed entries of λ˚. For the function F̄ in
Definition 7, let J˚ be its Jacobian with respect to the first variable, evaluated at prλ̄˚, asT , 0q and σminpJ˚q

its smallest singular value. We also assume that the solution λ˚ forms a dual certificate, namely the function
qptq defined in (14) satisfies conditions (15) and (16). If J˚ is invertible, }w}2 ď δw and

|q2pt˚q| ď 2

ˆ

1 `
4mτ

σ2

˙

, (40)

then, for a perturbation λ of λ˚ with the same fixed entries to the boundary of the box constraint, we have
that:

›

›λ´ λ˚
›

›

2
ď Cλ˚ ¨ }w}2 , (41)

where

Cλ˚ “
2

σminpJ˚q
, (42)

δw “
σminpJ˚q2

4P pm, k, σ,Π, τ, Ct˚ q
, (43)

and

P pm, k, σ,Π, τ, Ct˚ q “
?
2k

«

1

σ2

´

2
?
kC2

t˚Π ` 4kCt˚∆̄2τΠ
¯

`
1

σ

˜?
2kCt˚

?
e

` 4
?
kC2

t˚Π `
2
?
2∆̄2Π
?
e

` 8kCt˚∆̄2τΠ `

?
2k∆̄2Π
?
e

`

c

2

e
Ct˚

¸ff

, (44)

where Ct˚ is given in (19) in Theorem 2, c « 3.9036, c2 “ 4 ` c
?
2?
e

« 7.3484 are universal constants and

∆̄2 “

?
k

σ4

˜

c2Ct˚mτ `
2
?
2

?
e
σ

¸

. (45)
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The theorem above makes explicit the dependence of the perturbation in the dual variable λ around the
solution λ˚ on the additive noise w in the measurement vector y, with the assumption given in Definition 5.
This is a linear relation where the constant depends on the specific configuration of the problem we are
solving, namely the locations and weights of the sources, and width of the Gaussian and the sampling
locations. The theorem also gives an upper bound on the magnitude of the noise where this result holds as
a function of the same parameters.

As an additional interpretation of Theorem 8 regarding the assumption on the fixed entries in λ and λ˚,
it states that, for a solution λ to the dual problem (27) with noisy measurements that has m ´ k entries
equal to the boundary of the box constraint, there is a solution λ˚ to the noise-free dual problem w “ 0
with the same entries fixed to the boundary of the box constraint and the error for the remaining k entries
bounded by (41).

Moreover, under a few additional assumptions, we give a simplified approximation of the constant P in
(44) for clarity:

Proposition 9. (Simplified P) Under the conditions of Theorem 8 and, in addition, if Π, τ ď 1, then:

P pm, k, σ, Ct˚ q “ O

˜

mk5{2C2
t˚

σ6

¸

. (46)

One important observation is that, while the above result only applies to a subset of the entries in λ and
w, which entries are selected is not arbitrary. The choice of the entries in λ and w reflects which samples sj
contain the most information, and therefore which noise entries in w affect the solution to the optimisation
problem the most. More specifically, in order for the Jacobian J˚ to be invertible, we are led to select the
samples (and therefore λ and w entries) that satisfy this condition the best, namely the ones that are the
closest to the source locations. We discuss this aspect in more detail in Section 3.1.

Lastly, note that the results in Section 2 and Section 3 refer to different optimisation problems: the duals
(10) and (27) of problems (7) and (9) respectively. However, the proofs of our perturbation results rely on the
property that the dual solution λ forms a dual certificate, the global maximisers of which give the locations
of the point sources in the input signal x, with the additional bound on λ from (27) being used in the proof
of Theorem 8. Moreover, since our analysis is independent of the exact formulation of the primal problems,
we can conclude that the results from both Section 2 and Section 3 apply to the problem of super-resolution
in the noisy setting, namely they give bounds of the perturbations of the source locations and weights as a
consequence of noise in the measurements.

3.1 Discussion
One of the conditions in Theorem 8 is that the Jacobian J˚ is invertible. While we do not provide a rigorous
analysis of the conditions in which this is satisfied, in this section we discuss in more detail what the condition
requires and give further motivation for why it is true in a reasonable scenario. Specifically, we assume that
the samples that are used for calculating the Jacobian are the closest samples to the sources, i.e. the set θ
for which we define F̄ in Definition 7 contains the two indices corresponding to the closest two samples to
each source location, for each of the k sources. Therefore, the rows in the system given by F̄ in (39), as well
as the entries in λ̄ and the entries in the noise vector wθ, correspond to these samples.

Recall that J˚ is the Jacobian of the function F̄ from (39) with respect to the first argument. The entries
in J˚ are:

Bλ̄l
F̄ prλ̄, νsT , wq

ˇ

ˇ

ˇλ̄“λ̄˚

ν“a
wθ“0

“ ´

k
ÿ

i“1

aiϕ
1pt˚i ´ sθj qBλ̄l

tipλ̄
˚q (47)

“

k
ÿ

i“1

aiϕ
1pt˚i ´ sθj qϕ1pt˚i ´ slq

q2pt˚i q
, (48)

for l “ 1, . . . , k, j “ 1, . . . , 2k, where tslu
k
l“1 correspond to the non-fixed entries of λ (i.e. λ̄) and

Bνl
F̄ prλ̄, νsT , wθq

ˇ

ˇ

ˇλ̄“λ̄˚

ν“a
wθ“0

“ ´ϕpt˚l ´ sθj q, (49)
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for l “ 1, . . . , k, j “ 1, . . . , 2k, where in the first equality we used (59) with (63) and (64) plugged in, so the
result holds under the conditions in Theorem 2, namely for λ with }λ´λ˚}2 ď δλ, where δλ is given in (17).

Writing J˚ as
J˚ “ rJλJνs, (50)

where the entries in the blocks Jλ and Jν are given by (48) and (49) respectively, we have that:

Jλ “

k
ÿ

i“1

ai
q2pt˚i q

Φ̄1pt˚i qΦ̄1pt˚i qT , (51)

and
Jν “ ´rΦ̄pt˚1 q . . . Φ̄pt˚kqs, (52)

where

Φ̄ptq “ rϕpt´ sθ1q, . . . , ϕpt´ sθ2kqsT , (53)

Φ̄1ptq “ rϕ1pt´ sθ1q, . . . , ϕ1pt´ sθ2kqsT . (54)

Note that rankpJνq “ k by the T-systems property of the Gaussian (assuming that the t1 ď . . . ď tk and
sθ1 ď . . . ď sθ2k) and in order for the matrix J˚ to be invertible we need rankpJ˚q “ 2k, as it is a square
matrix with 2k columns. By rewriting the columns of Jλ, we have that:

J˚ “

»

–

k
ÿ

i“1

aiϕ
1pt˚i ´ s1q

q2pt˚i q
Φ̄1pt˚i q . . .

k
ÿ

i“1

aiϕ
1pt˚i ´ skq

q2pt˚i q
Φ̄1pt˚i q ´ Φ̄pt˚1 q . . . ´ Φ̄pt˚kq

fi

fl , (55)

and by taking its determinant and using the multi-linearity property of the determinant with respect to its
columns, we have that:

detpJ˚q “ p´1qk
a1 . . . ak

q2pt˚1 q . . . q2pt˚kq

¨

k!
ÿ

l“1

¨

˝

k
ź

i“1

ϕ1pPlpt
˚
i q ´ siq

˛

‚

ˇ

ˇPlpΦ̄
1pt˚1 qq . . . PlpΦ̄

1pt˚kqq Φ̄pt˚1 q . . . Φ̄pt˚kq
ˇ

ˇ , (56)

where Pl for l “ 1, . . . , k! are the permutations of k elements. Note that when we expand the determinant,
the terms in the final sum are determinants with all the possible combinations of the vectors in each sum,
which results in most determinants having repeated columns, so they are equal to zero. The only non-zero
determinants in the resulting sum are the ones where the first k columns are the vectors tΦ1pt˚i quki“1 and their
permutations, multiplied by the corresponding constants. We now order the columns of the determinant:

detpJ˚q “ p´1qk
a1 . . . ak

q2pt˚1 q . . . q2pt˚kq

k!
ÿ

l“1

signpPiq

¨

˝

k
ź

i“1

ϕ1pPlpt
˚
i q ´ siq

˛

‚

ˇ

ˇΦ̄pt˚1 q Φ̄1pt˚1 q . . . Φ̄pt˚kq Φ̄1pt˚kq
ˇ

ˇ ,

“ p´1qk
a1 . . . ak

q2pt˚1 q . . . q2pt˚kq

ˇ

ˇΦ̄pt˚1 q Φ̄1pt˚1 q . . . Φ̄pt˚kq Φ̄1pt˚kq
ˇ

ˇ

k!
ÿ

l“1

signpPlq

¨

˝

k
ź

i“1

ϕ1pPlpt
˚
i q ´ siq

˛

‚, (57)

where by signpPiq we denote the sign of the determinant corresponding to the permutation Pi after reorder-
ing the columns as above. Because of the extended T-system property of the Gaussian function [29], the
determinant above is strictly positive. The dominant term in the sum is the one corresponding to the identity
permutation, where for each i “ 1, . . . , k, the sample si is the closest sample to the source location t˚i . As
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the samples get further, the terms of the sum approach zero. This can be expressed more quantitatively by
imposing explicit conditions on the distances between the closest samples and the sources, the separation of
sources and the separation of samples, as done, for example, in [13].

As a last remark to motivate the choice of the dimension of λ̄˚ and λ̄ in Definition 5, note the expansion in
(56) of detpJ˚q. If the vector λ̄ had more than k entries, then the columns consisting of the permutations of
Φ̄1pt˚i q would inevitably be repeated, since there are k sources t˚i and more than k such columns. This implies
that all the determinants in the sum would be zero and, therefore, J˚ would not be invertible, implying that
Theorem 8 would not be true in this case. This explains why choosing λ̄ to contain more than k entries of
λ would be incompatible with our analysis in the proof of Theorem 8.

4 Proofs
In this section we present the proofs of the theorems from Sections 2 and 3.

4.1 Proof of Theorem 2 (Dependence of |t ´ t˚| on }λ ´ λ˚}2)
Let t˚ be an arbitrary local maximiser of the function qptq in (14), so t˚ is also a source location, and λ˚

the solution to (10). The key step in this proof is applying a quantitative version of the implicit function
theorem [28] to the function:

F pt, λq “

m
ÿ

j“1

λjϕ
1pt´ sjq, (58)

where F pt˚, λ˚q “ 0 because t˚ is a maximizer of qpsq in (14). The theorem allows us to express t as a
function tpλq of λ with:

Bλtpλq “ ´
“

BtF ptpλq, λq
‰´1

BλF ptpλq, λq, (59)

for t in a ball of radius δ0 around t˚ and for λ in a ball of radius δ1 ď δ0 around λ˚, where δ0 is chosen such
that

sup
pt,λqPVδ

›

›

›
I ´

“

BtF pt˚, λ˚q
‰´1

BtF pt, λq

›

›

›
ď

1

2
, (60)

where Vδ “
␣

pt, λq P Rm`1 : |t´ t˚| ď δ0, }λ´ λ˚} ď δ0
(

and δ1 is given by

δ1 “ p2MtBλq´1δ0, (61)

where

Bλ “ sup
pt,λqPVδ

}BλF pt, λq}2,

Mt “

›

›

›
BtF pt˚, λ˚q´1

›

›

›

2
.

The following two lemmas, proved in Sections 4.1.1 and 4.1.2 respectively, give us values of δ0 and δ1 that
define balls around t˚ and λ˚ respectively which are included in the balls required by the quantitative implicit
function theorem with radii defined in (60) and (61).

Lemma 10. (Radius of ball around t˚) The condition (60) is satisfied if

δ0 “
σ2|q2pt˚q|

?
m
´

4 ` 2c ¨
}λ˚}2

σ

¯ . (62)

Lemma 11. (Radius of ball around λ˚) For δ0 from Lemma 10 and δ1 from condition (61), the following
choice of δλ:

δλ “
σ

?
e|q2pt˚q|

2
?
2m

¨ δ0

satisfies δλ ă δ1.

12



Given the definition of the function F in (58), we have that

BtF pt, λq “

m
ÿ

j“1

λjϕ
2pt´ sjq, (63)

BλF pt, λq “ rϕ1pt´ s1q, . . . , ϕ1pt´ smqsT . (64)

By applying Taylor expansion to tpλq around λ˚ in the region defined by δ0 and δλ, we have that

tpλq “ tpλ˚q `
〈
λ´ λ˚, Bλtpλδq

〉
,

for some λδ on the line segment determined by λ˚ and λ, so
ˇ

ˇtpλq ´ tpλ˚q
ˇ

ˇ ď
›

›λ´ λ˚
›

›

2
¨
›

›Bλtpλδq
›

›

2

ď
δ0

řm
j“1 λδjϕ

2ptpλδq ´ sjq
¨

›

›

›

“

ϕ1ptpλδq ´ s1q, . . . , ϕ1ptpλδq ´ smq
‰

›

›

›

2
, (65)

where in the last inequality we used that }λ´ λ˚} ď δ0 and (59). We now need to bound the terms in (65)
for the Gaussian kernel ϕptq “ e´t2{σ2

. First, we rewrite the last inequality as

|tpλq ´ tpλ˚q|

m
ÿ

j“1

pλδj ` λ˚
j ´ λ˚

j qϕ2ptpλδq ´ sjq

ď δ0 ¨

›

›

›

“

ϕ1ptpλδq ´ s1q, . . . , ϕ1ptpλδq ´ smq
‰

›

›

›

2
, (66)

we apply the reverse triangle inequality in the sum on the left hand side:

|tpλq ´ tpλ˚q|

»

—

–

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

pλδj ´ λ˚
j qϕ2ptpλδq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

2ptpλδq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

ď δ0 ¨

›

›

›

“

ϕ1ptpλδq ´ sjq
‰m

j“1

›

›

›

2
(67)

and then we apply the Cauchy-Schwartz inequality to the first sum on the left hand side above to obtain:

|tpλq ´ tpλ˚q|

»

—

–

´
›

›λδ ´ λ˚
›

›

2
¨

›

›

›

“

ϕ2ptpλδq ´ sjq
‰m

j“1

›

›

›

2
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

2ptpλδq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

ď δ0 ¨

›

›

›

“

ϕ1ptpλδq ´ sjq
‰m

j“1

›

›

›

2
. (68)

To simplify the notation, we write δt “ |tpλq ´ tpλ˚q| and

A “

›

›

›

“

ϕ2ptpλδq ´ sjq
‰m

j“1

›

›

›

2
, (69)

B “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

2ptpλδq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (70)

C “

›

›

›

“

ϕ1ptpλδq ´ sjq
‰m

j“1

›

›

›

2
, (71)

and by using2 }λδ ´ λ˚}2 ď δ0, we have that:

δtp´δ0A`Bq ď δ0C, (72)

which can be further re-written as:
δt ď

C ` δtA

B
¨ δ0. (73)

The aim now is to obtain a bound on δt as a function of δ0 and the parameters of the problem. Therefore,
we need to lower bound B and upper bound C ` δtA.

2Since }λ ´ λ˚} ď δ0 and λδ is on the line segment between λ˚ and λ, then λδ is in the ball centred at λ˚ with radius δ0.

13



Bounding A,B,C

We start with B, for which we want to calculate a lower bound. First, we Taylor expand each term of the
sum around tpλ˚q ´ sj as follows:

B “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

2ptpλ˚q ´ sj ` tpλδq ´ tpλ˚qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

2ptpλ˚q ´ sjq `
`

tpλδq ´ tpλ˚q
˘

m
ÿ

j“1

λ˚
j ϕ

3pξjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(74)

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

2ptpλ˚q ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´
ˇ

ˇtpλδq ´ tpλ˚q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

3pξjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (75)

where ξj P
“

tpλ˚q ´ sj ´ |tpλδq ´ tpλ˚q|, tpλ˚q ´ sj ` |tpλδq ´ tpλ˚q|
‰

for j “ 1, . . . ,m, and on the last line
we used the reverse triangle inequality. We calculate an upper bound of the last sum in the previous equation
as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

3pξjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
›

›λ˚
›

›

2
¨

›

›

›

“

ϕ3pξjq
‰m

j“1

›

›

›

2
, by Cauchy-Schwartz, (76)

ď
c}λ˚}2

?
m

σ3
, (77)

where in the last line we used the maximum value of ϕ3ptq and c is a constant.3
Finally, by using the δ0 from Lemma 10 as a bound on |tpλδq ´ tpλ˚q| and (77), we obtain:

B ě |q2pt˚q|

„

1 ´
c}λ˚}2

4σ ` 2c}λ˚}2

ȷ

. (78)

Note that the last fraction above is subunitary, so the bound is indeed positive.
Lastly, we upper bound C ` δtA. We bound both A and C using the upper bounds on ϕ1 and ϕ2 given

in footnote 3 and obtain:

A ď
2

?
m

σ2
, (79)

C ď

?
2m

σ
?
e
, (80)

and for δt we use the bound (62). Putting (62), (78), (79) and (80) together, we obtain:
ˇ

ˇtpλq ´ tpλ˚q
ˇ

ˇ ď Ct˚ ¨
›

›λ´ λ˚
›

›

2
, (81)

where

Ct˚ “
2

?
2m

`

2σ ` c}λ˚}2
˘

|q2pt˚q|σ
?
e
`

4σ ` c}λ˚}2
˘ `

2σ

4σ ` F }λ˚}2
, (82)

which can also be written in the form in (19) in Theorem 2.

4.1.1 Proof of Lemma 10 (Radius δ0 of the ball around t˚)

Let us now find the radius δ0 which satisfies (60). Using (63), the expression inside the sup in (60) is

E “

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´

řm
j“1 λjϕ

2pt´ sjq
řm

j“1 λ
˚
j ϕ

2pt˚ ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

řm
j“1 λ

˚
j ϕ

2pt˚ ´ sjq ´ λjϕ
2pt´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řm
j“1 λ

˚
j ϕ

2pt˚ ´ sjq

ˇ

ˇ

ˇ
.

(83)

3 maxtPR ϕ1ptq “
?
2

σ
?
e
,maxtPR ϕ2ptq “ 2

σ2 ,maxtPR ϕ3ptq “ c
σ3 , where c “

4
?

9´3
?
6

e
3´

?
6

2

« 3.9036.
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By denoting each term in the sum in the numerator in the last equation above by Tj and then adding and
subtracting λ˚

j and t˚, we obtain:

Tj “ λ˚
j ϕ

2pt˚ ´ sjq ´ pλj ´ λ˚
j qϕ2pt´ sjq ´ λ˚

j ϕ
2pt˚ ´ sj ` t´ t˚q

“ ´pλj ´ λ˚
j qϕ2pt´ sjq ´ λ˚

j pt´ t˚qϕ3pξjq, (84)

for some ξj P
“

t˚ ´ sj ´ |t´ t˚|, t˚ ´ sj ` |t´ t˚|
‰

. Then:

E ď

ˇ

ˇ

ˇ

řm
j“1pλj ´ λ˚

j qϕ2pt´ sjq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

řm
j“1 λ

˚
j pt´ t˚qϕ3pξjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řm
j“1 λ

˚
j ϕ

2pt˚ ´ sjq

ˇ

ˇ

ˇ

ď

}λ´ λ˚}2

›

›

›

“

ϕ2pt´ sjq
‰m

j“1

›

›

›

2
` |t´ t˚|

ˇ

ˇ

ˇ

řm
j“1 λ

˚
j ϕ

3pξjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řm
j“1 λ

˚
j ϕ

2pt˚ ´ sjq

ˇ

ˇ

ˇ

“ E1 (85)

We now have that

sup
pt,λqPVδ0

E ď sup
|t´t˚

|ďδ0,

}λ´λ˚
}ďδ0

E1 (86)

ď δ0 ¨

›

›

›

“

ϕ2pt´ sjq
‰m

j“1

›

›

›

2
`

ˇ

ˇ

ˇ

řm
j“1 λ

˚
j ϕ

3pξjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řm
j“1 λ

˚
j ϕ

2pt˚ ´ sjq

ˇ

ˇ

ˇ

. (87)

We now further upper bound the fraction on the last line of the previous equation. The terms in the
numerator are bounded by taking the maxima of the functions ϕ2 and ϕ3 from footnote 3 respectively:

›

›

›

“

ϕ2pt´ sjq
‰m

j“1

›

›

›

2
“

g

f

f

e

m
ÿ

j“1

ϕ2pt´ sjq2 ď

c

m ¨ max
j

|ϕ2pt´ sjq|2 ď
2
?
m

σ2
(88)

and
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

3pξjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď }λ˚}2

›

›

›

“

ϕ3pξjq
‰m

j“1

›

›

›

2
by Cauchy-Schwartz (89)

“ }λ˚}2

g

f

f

e

m
ÿ

j“1

ϕ3pξjq2 (90)

ď }λ˚}2 max
j

|ϕ3pξjq|
?
m (91)

“ c ¨
}λ˚}2

?
m

σ3
, (92)

where c “
4
?

9´3
?
6

e
3´

?
6

2

« 3.9036. By writing

qptq “

m
ÿ

j“1

λ˚
j ϕpt´ sjq (93)

and using the above bounds, we have that

sup
pt,λqPVδ0

E ď δ0 ¨

2
?
m

σ2 ` c ¨
}λ˚

}2
?
m

σ3
ˇ

ˇq2pt˚q
ˇ

ˇ

(94)

15



Finally, in order to satisfy condition (60), we need to impose the condition that the right hand side of (94)
is less than or equal to 1

2 . We select δ0 to be the largest value that satisfies this, so:

|t´ t˚| ď δ0 “

ˇ

ˇq2pt˚q
ˇ

ˇ

4
?
m

σ2 ` 2c ¨
}λ˚}2

?
m

σ3

“
σ2|q2pt˚q|

?
m
´

4 ` 2c ¨
}λ˚}2

σ

¯ . (95)

4.1.2 Proof of Lemma 11 (Radius δλ of the ball around λ˚)

The radius δλ of the perturbation of λ˚ is given by:

δλ “ p2MtBλq´1δ0, (96)

where

Bλ “ sup
pt,λqPVδ

}BλF pt, λq}2, (97)

Mt “

›

›

›
BtF pt˚, λ˚q´1

›

›

›

2
. (98)

For Bλ, we have:

}BλF pt, λq}2 “

g

f

f

e

m
ÿ

j“1

ϕ1pt´ sjq2 ď

?
2m

σ
?
e
, (99)

where we have used the global maximum of the first derivative of the Gaussian from footnote 3, so by taking
sup on both sides in the last equation, we obtain:

Bλ ď

?
2m

σ
?
e
. (100)

Note that here we do not use any assumptions on the locations of the sources ti and the samples sj . If we
did, we would be able to obtain a tighter bound than by only using the absolute maximum of the function.

For Mt, note that we have
Mt “ |q2pt˚q|´1, (101)

where qptq is defined in (93), so

p2MtBλq´1δ0 ě
σ

?
e|q2pt˚q|

2
?
2m

¨ δ0, (102)

We then take δλ to be equal to the lower bound in the equation above:

δλ “
σ

?
e|q2pt˚q|

2
?
2m

¨ δ0, (103)

and, after substituting our choice of δ0 from (62), we obtain the radius (17) in Theorem 2.

4.1.3 Proof of Proposition 3

Starting from the definition of Ct˚ in (19), we have that:

Ct˚ “
1

4 ` cR

«

1 `
2
?
2mp2 ` cRq

|q2pt˚q|
?
e

ff

ă
1

4 ` c}λ˚}2{σ
`

2
?
2m

|q2pt˚q|
?
e

ă
1

4
`

2
?
2

?
e

¨

?
m

|q2pt˚q|
, (104)

where in the first inequality we used the definition of R “
}λ˚

}2
σ and 2`cR

4`cR ă 1 and in the second inequality
we used c}λ˚}2{σ ą 0, where c « 3.9036 is a universal constant.
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4.2 Proof of Theorem 4 (Dependence of }ã ´ a˚}2 on }̃t ´ t˚}2)
We apply equation (4.2) in [30], with e “ 0 (the noise in the observations), and obtain

ã “ a˚ ´ Φ:Ea˚ ´ FTEa˚, (105)

where Φ: “ pΦTΦq´1ΦT is the pseudo-inverse of Φ and F “ OpEq is the perturbation of the Φ: due to the
perturbation E of Φ, namely

Φ̃: “ Φ: ` FT .

In order to obtain an explicit expression for F , we write Φ̃::

Φ̃: “ pΦ̃T Φ̃q´1Φ̃T

“

”

pΦ ` EqT pΦ ` Eq

ı´1

pΦ ` EqT by (23)

“ pΦTΦ ` ∆q´1pΦT ` ET q, (106)

where
∆ “ ETΦ ` ΦTE ` ETE P Rkˆk. (107)

In order to compute the first factor in (106), consider the QR decomposition of Φ:

Φ “ QR, where Q P Rmˆk and R P Rkˆk, (108)

with QTQ “ Ik R upper triangular. We have that:

Φ: “ R´1QT , (109)

ΦTΦ “ RTR. (110)

We then write the first factor in (106) as

pΦTΦ ` ∆q´1 “ pRTR ` ∆q´1

“

„

RT
´

I `R´T∆R´1
¯

R

ȷ´1

“ R´1

»

–I `

8
ÿ

l“1

p´1ql
´

R´T∆R´1
¯l

fi

flR´T

“ pRTRq´1 ` SΦ

“ pΦTΦq´1 ` SΦ, (111)

where

SΦ “ R´1

»

–

8
ÿ

l“1

p´1ql
´

R´T∆R´1
¯l

fi

flR´T P Rkˆk, (112)

and in the second inequality in (111) we applied the Neumann series expansion to the matrix I´R´T∆R´1,
which converges if

} ´R´T∆R´1}2 ă 1. (113)

We will return to condition (113) at the end of this section. We now substitute (111) in (106), giving

Φ̃: “

”

pΦTΦq´1 ` SΦ

ı

pΦT ` ET q

“ Φ: ` pΦTΦq´1ET ` SΦΦ
T ` SΦE

T ,

so we have that
FT “ pΦTΦq´1ET ` SΦΦ

T ` SΦE
T , (114)
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which is indeed OpEq, since SΦ “ Op∆q and ∆ “ OpEq. We next upper bound }SΦ}2. Firstly, note that,
because Φ: “

`

QR´1
˘T , we have that:4

}Φ:}2 “ }QR´1}2 “ }R´1}2. (116)

Then, by using (116), norm submultiplicativity and triangle inequality, from (112) we have

}SΦ}2 ď }Φ:}22

8
ÿ

l“1

}Φ:}2l2 }∆}l2. (117)

Now let D be an upper bound on }∆}2, obtained by applying the triangle inequality in (107), so that

}∆}2 ď D “ 2}E}2}Φ}2 ` }E}22. (118)

Then, from (117) we have

}SΦ}2 ď }Φ:}22

8
ÿ

l“1

}Φ:}2l2 D
l

“ }Φ:}22

˜

1

1 ´D}Φ:}22
´ 1

¸

“
D}Φ:}42

1 ´D}Φ:}22
, (119)

where the series converges if D}Φ:}22 ă 1, in which case the denominator in the last fraction above is positive.
We return to this condition at the end of the section. We also know that5

}Φ:}2 “
1

σminpΦq
. (120)

By applying triangle inequality in (114) and then using (119) and the fact that }pΦTΦq´1}2 “ 1{σ2
minpΦq “

}Φ:}22 (from (120)), we obtain

}F }2 ď }E}2}Φ:}22 `
D}Φ:}42

1 ´D}Φ:}22

`

}Φ}2 ` }E}2
˘

, (121)

where D is given in (118). It remains to establish an upper bound on }E}F , and consequently on }E}2. The
following lemma, proved in Section 4.2.1 gives us such a bound.

Lemma 12. (Upper bound on }E}F q Let E “ Φ̃´Φ for Φ and Φ̃ as defined in (22) and (23) respectively
for tj , t̃j P r0, 1s for j “ 1, . . . , k. Then:

}E}F ď
4e

4
σ2 maxj |t̃j´tj |?m

σ2
}̃t ´ t˚}2. (122)

By using triangle inequality and norm submultiplicativity in (105), and then substituting (121) and (122),
we obtain

}a˚ ´ ã}2 ď }E}2}Φ:}2}a˚}2 ` }E}22}Φ:}22}a˚}2

`
}E}2D}Φ:}42

1 ´D}Φ:}22
p}Φ}2 ` }E}2q}a˚}2

ď
4e

4
σ2 maxj |t̃j´tj |?m}a˚}2

σ2σminpΦq
}̃t ´ t˚}2 `Op}̃t ´ t˚}22q, (123)

4To see the second equality in (116), for a matrix Q P Rmˆk with QTQ “ I and any matrix A P Rkˆk we have that

}QA}2 “ sup
}v}2“1

}QAv}2 “ sup
}v}2“1

}Av}2 “ }A}2,

since
}QAv}22 “ vTATQTQAv “ vTATAv “ }Av}22. (115)

5Using the SVD Φ “ UΣV T , we have Φ: “ pΦTΦq´1ΦT “ pV Σ2V T q´1V ΣUT “ V Σ´1UT , so the conclusion follows.
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which is the bound given in Theorem 4. Note that because }E}2 “ Op}t̃ ´ t˚}2q (see (122)), the first term
is the only term that is Op}t̃ ´ t˚}2q in the first inequality above, so the other terms are included in the
Op}t̃ ´ t˚}22q term at the end.6

Lastly, we return to condition (113), which must be satisfied in order for the bound above to hold. By
using norm submultiplicativity and the bound on }∆}2 from (118), we obtain

}Φ:T∆Φ:}2 ď }Φ:}22}E}22 ` 2}Φ}2}Φ:}22}E}2 (124)

and by requiring that the right hand side above is less than one, we obtain a quadratic constraint on }E}2,
satisfied if

}E}2 ă σmaxpΦq

¨

˝

d

1 `
σ2
minpΦq

σ2
maxpΦq

´ 1

˛

‚.

By using the bound on }E}2 from (122) with maxj |t̃j ´ tj | ď 1, the above holds if

δt ă
σ2σmaxpΦq

4e4{σ2?
m

¨

˝

d

1 `
σ2
minpΦq

σ2
maxpΦq

´ 1

˛

‚,

which is the condition (25) in the statement of the theorem. Note that by imposing this, we also ensure
that the condition for the series in (119) to converge holds, since D}Φ:}22 is equal to the right hand side of
(124).

4.2.1 Proof of Lemma 12 (Bound of }E}F )

Since E “ Φ̃ ´ Φ, for t̃j being a perturbation of tj , we have that

|Eij | “

ˇ

ˇ

ˇ

ˇ

ˇ

e´
psi´t̃jq2

σ2 ´ e´
psi´tjq2

σ2

ˇ

ˇ

ˇ

ˇ

ˇ

“ e´
psi´tjq2

σ2

ˇ

ˇ

ˇ
e

1
σ2 rpsi´tjq

2
´psi´t̃jq

2s ´ 1
ˇ

ˇ

ˇ
.

Then the exponent can be written as
ˇ

ˇ

ˇ

ˇ

1

σ2

”

psi ´ tjq2 ´ psi ´ t̃jq2
ı

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

σ2

”

2sipt̃j ´ tjq ` ptj ` t̃jqptj ´ t̃jq

ı

ˇ

ˇ

ˇ

ˇ

ď
4|t̃j ´ tj |

σ2
,

where we used that si, t̃j , tj P r0, 1s, so

e´ 4
σ2 |t̃j´tj |

ď e
1
σ2 rpsi´tjq

2
´psi´t̃jq

2s ď e
4
σ2 |t̃j´tj |,

which implies that

|Eij | ď

ˇ

ˇ

ˇ
e

1
σ2 rpsi´tjq

2
´psi´t̃jq

2s ´ 1
ˇ

ˇ

ˇ

ď max
!

1 ´ e´ 4
σ2 |t̃j´tj |, e

4
σ2 |t̃j´tj |

´ 1
)

“ e
4
σ2 |t̃j´tj |

´ 1

“
4

σ2
|t̃j ´ tj | ¨ eξ,

for some ξ P

”

´ 4
σ2 |t̃j ´ tj |, 4

σ2 |t̃j ´ tj |

ı

and where in the first inequality we have used that e´
psi´tjq2

σ2 ď 1.
Then

|Eij | ď
4

σ2
|t̃j ´ tj | ¨ e

4
σ2 |t̃j´tj |,

6In these terms, note that maxj |t̃j ´ tj | ď 1 and therefore the notation Op}t̃ ´ t˚}22q is correct.
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and we conclude that

}E}2 ď }E}F ď

g

f

f

e

m
ÿ

i“1

k
ÿ

j“1

˜

4e
4
σ2 |t̃j´tj |

σ2

¸2

|t̃j ´ tj |2

ď
4e

4
σ2 maxj |t̃j´tj |?m

σ2
}̃t ´ t˚}2, (125)

provided that t̃j , tj P r0, 1s for all j “ 1, . . . , k.

4.3 Proof of Theorem 8 (Dependence of }λ ´ λ˚}2 on the noise w)
We apply the quantitative implicit function theorem to the function F̄ defined in (39). First, note that in
the bound (41), which we want to prove, we only need to consider the k non-fixed entries of λ and λ˚, as
the error in the other entries zero. Therefore, in this proof we will only work with the vectors of non-fixed
entries λ̄, λ̄˚ P Rk, but we will abuse the notation for simplicity and write λ and λ˚ respectively. Similarly,
we will write w to denote the vector wθ P R2k corresponding to the 2k entries of the noise vector w P Rm

and s1, . . . , s2k to denote sθ1 , . . . , sθ2k . The partial derivatives of F̄ from Definition 7 are:

Bλl
F̄j “ ´

k
ÿ

i“1

νiϕ
1ptipλq ´ sjqBλl

tipλq l “ 1, . . . , k, j “ 1, . . . , 2k, (126)

Bνl
F̄j “ ´ϕptlpλq ´ sjq, l “ 1, . . . , k, j “ 1, . . . , 2k, (127)

Bwl
F̄j “

#

1, if l “ j,

0, otherwise,
l, j “ 1, . . . , 2k. (128)

Let γ “ rλ, νsT and γ˚ “ rλ˚, asT , so that we can write F̄ prλ, νsT , wq as F̄ pγ,wq and F̄ pγ˚, 0q “ 0. In
order to apply the implicit function theorem, the following conditions must be satisfied:

1. BγF̄ pγ˚, 0q is invertible,

2. We choose the radius δγ of the ball Vδγ around γ where the result of the quantitative implicit function
theorem holds:

sup
pγ,wqPVδγ

›

›

›
I ´

“

BγF̄ pγ˚, 0q
‰´1

BγF̄ pγ,wq

›

›

›

2
ď

1

2
, (129)

3. The radius δw of the ball around w˚ “ 0 that contains w is:

δw “ p2MwBδγ q´1δγ , (130)

where

Bδγ “ sup
pγ,wqPVδγ

}BwF̄ pγ,wq}2, (131)

Mw “ }BγF̄ pγ˚, 0q´1}2. (132)

The first condition is also one of the conditions in the theorem, and it has been discussed in Section 3.1. We
now need to establish the two radii for the balls of the perturbations.

Perturbation radii

Before proceeding to calculating the radii of the balls where the implicit function theorem holds, we state
the following lemma, which allows us to write the Jacobian of F̄ with respect to the first variable as a sum
of the Jacobian evaluated at pγ˚, w˚q “ prλ˚, asT , 0q and a perturbation matrix, whose norm is bounded
explicitly. The proof of Lemma 13 is given in Section 4.3.2.
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Lemma 13. (Bound on the perturbation of the Jacobian of F̄) Let Jpλ, ν, wq be the Jacobian of
F̄ pγ,wq with respect to γ “ rλ, νsT and δγ an upper bound on the perturbation of γ˚ “ rλ˚, asT , namely:

›

›

›

›

›

„

λ´ λ˚

ν ´ a

ȷ

›

›

›

›

›

2

ď δγ .

Then:
Jpλ, ν, wq “ Jpλ˚, a, 0q ` E, (133)

with
}E}F ď P pk, σ,Π, τ, Ct˚ q ¨ δγ , (134)

where:

P pk, σ,Π,τ, Ct˚ q “
?
2k

«

1

σ2

´

2
?
kC2

t˚Π ` 4kCt˚∆̄2τΠ ` 2Ct˚

¯

`
1

σ

˜?
2kCt˚

?
e

` 4
?
kC2

t˚Π `
2

?
2∆̄2Π
?
e

` 8kCt˚∆̄2τΠ `

?
2k∆̄2Π
?
e

¸ff

, (135)

for }λ ´ λ˚} ď δλ, where δλ and Ct˚ are given in (17) and (19) respectively in Theorem 2 and ∆̄2 is given
in (176) in the proof.

We can now use Lemma 13 to write

BγF̄ pγ,wq “ BγF̄ pγ˚, 0q ` E, (136)

then

I ´
“

BγF̄ pγ˚, 0q
‰´1

BγF̄ pγ,wq “ I ´
“

BγF̄ pγ˚, 0q
‰´1 “

BγF̄ pγ˚, 0q ` E
‰

“ ´
“

BγF̄ pγ˚, 0q
‰´1

E, (137)

so
›

›

›
I ´

“

BγF̄ pγ˚, 0q
‰´1

BγF̄ pγ,wq

›

›

›

2
ď

›

›

›

“

BγF̄ pγ˚, 0q
‰´1

›

›

›

2
¨ }E}F

ď
}E}F

σminpBγF̄ pγ˚, 0qq

ď
P pk, σ,Π, τ, Ct˚ q

σminpBγF̄ pγ˚, 0qq
¨ δγ , (138)

where P ¨ δγ is the upper bound on }E}F given in (135).
Therefore, from the condition that the right-hand side of the last inequality is less than or equal to 1

2 ,
we choose the radius δγ to be:

δγ “
σminpBγF̄ pγ˚, 0qq

2P pk, σ,Π, τ, Ct˚ q
. (139)

Using (128), we have that
Bδγ “ 1. (140)

Then
Mw “

1

σminpBγF̄ pγ˚, 0qq
, (141)

so, using (139), we obtain

δw “
σminpBγF̄ pγ˚, 0qq2

4P pk, σ,Π, τ, Ct˚ q
. (142)
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Applying the quantitative implicit function theorem

Having calculated the radii where the quantitative implicit function theorem holds, we apply it to obtain:

Bwgpwq “ ´
“

B1F̄ pgpwq, wq
‰´1

, (143)

where B1 is the partial derivative with respect with the first argument and gpwq gives the dependence of
rλ, νsT on w. Specifically, we write:

λipwq “ gipwq for i “ 1, . . . , k, (144)
νipwq “ gk`ipwq for i “ 1, . . . , k. (145)

Let Jpλ, ν, wq “ B1F̄ prλ, νsT , wq, where λ “ λpwq and ν “ νpwq by (144) and (145). Lemma 13 gives

Jpλ, ν, wq “ Jpλ˚, a, 0q ` E, (146)

so E is the perturbation of Jpλ˚, a, 0q due to perturbed λ, ν, w and a bound on }E}F is given in the lemma.
We will now use the following result, proved in Section 4.3.1, which enables us to make use of the upper

bound on the norm of the perturbation given by Lemma 13 in order to lower bound the smallest singular
value of J .

Lemma 14. Let J P Rmˆn. If J “ A` E, then

σminpJq ě σminpAq ´ }E}F .

By applying Lemma 14, we have that:

1

σminpJpλ, ν, wqq
ď

1

σminpJpλ˚, a, 0qq ´ }E}F
“

1

σminpJpλ˚, a, 0qq

´

1 ´
}E}F

σminpJpλ˚,a,0qq

¯

ď
1

σminpJpλ˚, a, 0qq
¨

ˆ

1 `
2}E}F

σminpJpλ˚, a, 0qq

˙

, (147)

for
}E}F

σminpJpλ˚, a, 0qq
ď

1

2
, (148)

where we used the fact that p1 ´ xq´1 ď 1 ` 2x for x P r0, 12 s. Note that the condition above is the same as
the condition that the right hand side of (138) is less than or equal to 1

2 , which is satisfied for our choice of
δγ and δw.

From (143) and (147), we have that:

}Bwgpwq}2 “
1

σminpJpλ˚, a, 0q ` Eq

ď
1

σminpJpλ˚, a, 0qq

ˆ

1 `
2

σminpJpλ˚, a, 0qq
¨ }E}F

˙

ď
2

σminpJpλ˚, a, 0qq
, (149)

where }E}F is upper bounded in (135) and w, λ and ν satisfy

}w}2 ď δw, }λ´ λ˚}2 ď δγ , }ν ´ a}2 ď δγ .

The first-order Taylor expansion of gpwq around w “ 0 is:

gpwq “ gp0q ` BwgpwδqTw, (150)

for some wδ on the segment between the zero vector and w. Noting that gpwq is our notation for the vector:

gpwq “

„

λpwq

νpwq

ȷ

, (151)
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with λp0q “ λ˚ and νp0q “ a, from (150) we have that:
›

›

›

›

›

„

λpwq ´ λ˚

νpwq ´ a

ȷ

›

›

›

›

›

2

“

›

›

›
BwgpwδqTw

›

›

›

2

ď }Bwgpwδq}2 ¨ }w}2, (152)

for w, λ and ν such that
}w}2 ď δw, }λ´ λ˚}2 ď δγ , }ν ´ a}2 ď δγ ,

where we use the bound from (149).

4.3.1 Proof of Lemma 14

We have that

σpJq “ min
}v}2“1

max
}u}2“1

uT pA` Eqv

ě min
}v}2“1

max
}u}2“1

uTAv ´ max
}v}2“1

max
}u}2“1

uTEv

ě σminpAq ´ }E}F .

4.3.2 Proof of Lemma 13 (Bound on the perturbation of the Jacobian of F̄ )

Let Jpλ, ν, wq “ B1F̄ prλ, νsT , wq, where λ “ λpwq and ν “ νpwq by (144) and (145), and we want to write J
in the form

Jpλ, ν, wq “ Jpλ˚, a, 0q ` E (153)

i.e. E is the perturbation of Jpλ˚, a, 0q due to perturbed λ, ν, w. In order to apply Lemma 14, we need an
upper bound on }E}F , so we need to upper bound each entry of E. Let

J “ rJ1J2s , (154)

where J1 corresponds to the terms (126) and J2 to the terms (127) and

E “ rE1E2s (155)

the corresponding perturbation terms.

Entries in J1

For i “ 1, . . . , k and j “ 1, . . . , 2k:

J1j,i “ ´

k
ÿ

p“1

pνp ´ ap ` apqϕ1ptppλq ´ t˚p ` t˚p ´ sjqBλi
tppλq

“ ´

k
ÿ

p“1

Bλi
tppλq

”

apϕ
1pt˚p ´ sj ` tppλq ´ t˚p q ` pνp ´ apqϕ1pt˚p ´ sj ` tppλq ´ t˚p q

ı

“ ´

k
ÿ

p“1

Bλitppλq
“

apϕ
1pt˚p ´ sjq ` apptppλq ´ t˚p qϕ2pξj,pq ` pνp ´ apqϕ1pt˚p ´ sjq

` pνp ´ apqptppλq ´ t˚p qϕ2pξj,pq
‰

“ ´

k
ÿ

p“1

Bλi
tppλq

´

apϕ
1pt˚p ´ sjq ` ∆1j,p

¯

, (156)

where
∆1j,p “ apptppλq ´ t˚p qϕ2pξj,pq ` pνp ´ apqϕ1pt˚p ´ sjq ` pνp ´ apqptppλq ´ t˚p qϕ2pξj,pq, (157)
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for some ξj,p P rt˚p ´ sj ´ |tp ´ t˚p |, t˚p ´ sj ` |tp ´ t˚p |s. The factor involving the partial derivative in (156) has
the same form as (59) so in order to bound it we write the Taylor expansion of (59) around λ˚:

Bλtppλq “ Bλtppλ˚q ` B2
λλtppλδq

`

λ´ λ˚
˘

, (158)

for some λδ on the segment between λ and λ˚. By using (59) with (63) and (64), the entry i, l in the Hessian
matrix H “ B2

λλtppλδq is
´

HT
¯

i,l
“

Fi,lpλq
”

řm
j“1 λjϕ

2ptppλq ´ sjq

ı2 , (159)

for i, l “ 1, . . . , k, where

Fi,lpλq “ ´ ϕ2ptppλq ´ siqBλl
tppλq

m
ÿ

j“1

λjϕ
2ptppλq ´ sjq

` ϕ1ptppλq ´ siq

¨

˝

m
ÿ

j“1

λjϕ
3ptppλq ´ sjqBλl

tppλq ` ϕ2ptppλq ´ slq

˛

‚. (160)

Note that in the denominator (159) we use all m entries of λ and samples due to how we defined the function
from (59), and the same is true for the sums in (160). From (158) and (160), we then write:

Bλitppλq “ Bλitppλ˚q ` ∆2i,p , (161)

where

∆2i,p “

k
ÿ

l“1

pλl ´ λ˚
l qFi,lpλδq

”

řm
j“1 λjϕ

2ptppλδq ´ sjq

ı2 . (162)

Note that l goes up to k because we only work with k entries in λ. Therefore, we have that:

J1j,i “ ´

k
ÿ

p“1

`

Bλitppλ˚q ` ∆2i,p

˘

´

apϕ
1pt˚p ´ sjq ` ∆1j,p

¯

, (163)

where

∆1j,p “ Op|tp ´ t˚p | ` |νp ´ ap|q, (164)

∆2i,p “ Op}λ´ λ˚}2q, (165)

for i “ 1, . . . , k, j “ 1, . . . , 2k and p “ 1, . . . , k. The next step now is to upper bound |∆1j,p | and |∆2i,p |.

Bounding ∆1j,p

By the triangle inequality, we have that:

|∆1j,p | ď |ap||tppλq ´ t˚p ||ϕ2pξj,pq| ` |νp ´ ap||ϕ1pt˚p ´ sjq| ` |νp ´ ap||tppλq ´ t˚p ||ϕ2pξj,pq|

ď |ap||tppλq ´ t˚p |
2

σ2
` |νp ´ ap|

?
2

?
eσ

` |νp ´ ap||tppλq ´ t˚p |
2

σ2
“: ∆̄1p , (166)

for j “ 1, . . . , 2k and p “ 1, . . . , k, where we have used the maxima of the Gaussian and its derivatives given
in footnote 3.
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Bounding ∆2i,p

By applying the Cauchy-Schwartz inequality, we have that:

|∆2i,p | ď
1

ˇ

ˇ

ˇ

řm
j“1 λjϕ

2ptppλδq ´ sjq

ˇ

ˇ

ˇ

2 ¨

›

›

›

›

›

›

›

›

»

—

—

–

Fi,1pλδq

...
Fi,kpλδq

fi

ffi

ffi

fl

›

›

›

›

›

›

›

›

2

¨ }λ´ λ˚}2 (167)

We now bound |Fi,l| for i, l “ 1, . . . , k:

|Fi,lpλδq| ď |ϕ2ptppλδq ´ siq|
ˇ

ˇBλl
tppλδq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λjϕ
2ptppλδq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` |ϕ1ptppλδq ´ siq|

¨

˚

˝

ˇ

ˇBλl
tppλδq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λjϕ
3ptppλδq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` |ϕ2ptppλδq ´ slq|

˛

‹

‚

ď
2Ct˚

σ2
}λδ}2 ¨

›

›

›

“

ϕ2ptppλδq ´ sjq
‰m

j“1

›

›

›

2

`

?
2

?
eσ

ˆ

Ct˚ }λδ}2 ¨

›

›

›

“

ϕ3ptppλδq ´ sjq
‰m

j“1

›

›

›

2
`

2

σ2

˙

ď
2Ct˚

σ2
}λδ}2 ¨

2
?
m

σ2
`

?
2

?
eσ

˜

Ct˚ }λδ}2 ¨
c
?
m

σ3
`

2

σ2

¸

, (168)

where we used the Cauchy-Schwartz inequality, the bounds in footnote 3 and Ct˚ from (19). Therefore, the
above inequality holds for λδ P Bpλ˚, δλq with δλ from (17).

The final bound on |Fi,l| is

|Fi,l| ď
c2Ct˚mτ

σ4
`

2
?
2

?
eσ3

, (169)

where c2 “ 4 ` c
?
2?
e

« 7.3484, for i, l “ 1, . . . , k and we used }λδ}2 ď τ
?
m.

The next step is to obtain a lower bound on the denominator in (167). By adding and subtracting λ˚
j to

λj and applying the reverse triangle inequality, we obtain:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λjϕ
2ptppλq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λ˚
j ϕ

2ptppλq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

pλj ´ λ˚
j qϕ2ptppλq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(170)

ě |q2pt˚q|

„

1 ´
c}λ˚}2

4σ ` 2c}λ˚}2

ȷ

´
2
?
m}λ´ λ˚}2

σ2
, (171)

where the first term on the right hand side on (170) has the same form as B in (70), and therefore on the
next line we use the bound in (78). For the second term, we apply the Cauchy-Schwartz inequality and the
bound in footnote 3, where the constant c « 3.9036 is obtained. The last inequality above holds under the
condition that the right hand side is positive. We set the stronger condition that the right hand side of (171)
is greater than or equal to one:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

λjϕ
2ptppλq ´ sjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě 1, (172)

which is satisfied if:

|q2pt˚q| ě

˜

1 `
2

?
m}λ´ λ˚}2

σ2

¸

¨
4σ ` 2c}λ˚}2

4σ ` c}λ˚}2
. (173)
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Then, using the box constraint }λ}8 ď τ and the fact that }λ´ λ˚}2 ď 2τ
?
m from the triangle inequality,

and the fact that 4σ`2c}λ˚
}2

4σ`c}λ˚}2
ď 2 the condition (173) is satisfied if:

|q2pt˚q| ě 2

ˆ

1 `
4mτ

σ2

˙

. (174)

By combining (167), (169) and (172), we obtain the final bound on |∆2i,p |:

|∆2i,p | ď ∆̄2 ¨ }λ´ λ˚}2, (175)

for i “ 1, . . . , k and p “ 1, . . . , k, where

∆̄2 “

?
k

σ4

˜

c2Ct˚mτ `
2
?
2

?
e
σ

¸

, (176)

and c « 3.9036, c2 “ 4 ` c
?
2?
e

« 7.3484.
Therefore, from (163) and by using the definitions of ∆̄1p and ∆̄2 from (166) and (176) respectively, we

have that:

|E1j,i | “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

p“1

Bλitppλ˚q∆1j,p ` apϕ
1pt˚p ´ sjq∆2i,p ` ∆1j,p∆2i,p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Ct

k
ÿ

p“1

∆̄1p ` }λ´ λ˚}2∆̄2}a}2 ¨

›

›

›

›

”

ϕ1pt˚p ´ sjq

ık

p“1

›

›

›

›

2

` }λ´ λ˚}2∆̄2

k
ÿ

p“1

∆̄1p

ď pCt ` }λ´ λ˚}2∆̄2q

´ 2

σ2
}a}2}tpλq ´ t˚}2 `

?
2

?
eσ

}ν ´ a}1

`
2

σ
}ν ´ a}2}tpλq ´ t˚}2

¯

`

?
2k

?
eσ

}a}2∆̄2

ď pCt ` }λ´ λ˚}2∆̄2q

´2
?
kCt˚

σ2
}a}2}λ´ λ˚}2 `

?
2

?
eσ

}ν ´ a}1

`
2

?
kCt˚

σ
}ν ´ a}2}λ´ λ˚}2

¯

`

?
2k

?
eσ

}a}2}λ´ λ˚}2∆̄2 “: Ē1 (177)

for i “ 1, . . . , k and j “ 1, . . . , 2k.

Entries in J2

By adding and subtracting t˚j then taking a Taylor expansion like before, we obtain:

J2j,i “ ´ϕpt˚i ´ sj ` tipλq ´ t˚i q

“ ´ϕpt˚i ´ sjq ´ ptipλq ´ t˚i qϕ1pξjq

“ ´ϕpt˚i ´ sjq ´ E2i,j , (178)

for some ξj P rt˚i ´ sj ´ |tipλq ´ t˚i |, t˚i ´ sj ` |tipλq ´ t˚i |s and E2j,i is the perturbation term. Then:

|E2j,i | ď |tipλq ´ t˚i | ¨

?
2

σ
?
e
, (179)

for i “ 1, . . . , k and j “ 1, . . . , 2k.
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Putting everything together
We have that

}E}F “

g

f

f

e

k
ÿ

i“1

2k
ÿ

j“1

E2
1j,i

`

k
ÿ

i“1

2k
ÿ

j“1

E2
2j,i

ď

g

f

f

e2k2Ē2
1 `

4k

σ2e

k
ÿ

i“1

|tipλq ´ t˚i |2

ď kĒ1

?
2 `

2
?
k

σ
?
e

}tpλq ´ t˚}2

ď kĒ1

?
2 `

2Ct˚k

σ
?
e

}λ´ λ˚}2, (180)

where we have used the bounds on the entries of E1 and E2 from (177) and (179) and Theorem 2, so this
result holds for λ P Bpλ˚, δλq for δλ defined in the theorem. Finally, by substituting the expression of Ē1

from (177), we obtain:

}E}F ď
?
2k

«

ˆ

Ct˚ ` }λ´ λ˚}2∆̄2

˙ˆ

2Ct˚

?
k

σ2
}a}2}λ´ λ˚}2

`

?
2

?
eσ

}ν ´ a}1 `
2Ct˚

?
k

σ
}ν ´ a}2}λ´ λ˚}2

˙

`

?
2k

?
eσ

}a}2}λ´ λ˚}2∆̄2

ff

`
2Ct˚k

σ
?
e

}λ´ λ˚}2. (181)

Let δγ be a bound on the perturbation:
›

›

›

›

›

„

λ´ λ˚

ν ´ a

ȷ

›

›

›

›

›

2

ď δγ , (182)

and therefore:
}λ´ λ˚}2 ď δγ and }ν ´ a}2 ď δγ . (183)

We also have that:

}ν ´ a}2 ď }ν ´ a}1 ď }ν}1 ` }a}1 ď 2Π, (184)

where we used that ν1 ` . . . ` νk ď Π and the fact that x “
řk

p“1 apδtp is the solution to (9), so it satisfies
}x}TV “ }a}1 ď Π.

Similarly, we have that:

}λ´ λ˚}2 ď }λ}2 ` }λ˚}2 ď
?
k}λ}8 `

?
k}λ˚}8

ď 2
?
kτ, (185)

since both λ and λ˚ satisfy the constraint in (27). In order to write the bound (181) as P ¨ δγ , we expand
the parentheses and use the following bounds:

}λ´ λ˚}2}ν ´ a}1 ď 2Π ¨ δγ (186)

}λ´ λ˚}22}ν ´ a}2 ď 4
?
kτΠ ¨ δγ (187)

}λ´ λ˚}2}ν ´ a}2 ď 2Π ¨ δγ (188)
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to obtain:

}E}F ď
?
2k

ˆ

2
?
kC2

t˚Π

σ2
`

?
2kCt˚

?
eσ

`
4
?
kC2

t˚Π

σ

`
4kCt˚∆̄2τΠ

σ2
`

2
?
2∆̄2Π

?
eσ

`
8kCt˚∆̄2τΠ

σ
`

?
2k∆̄2Π
?
eσ

`

?
2Ct˚

σ
?
e

˙

¨ δγ , (189)

which we rearrange based on σ to obtain }E}F ď P pk, σ,Π, τ, Ct˚ q ¨ δγ , where:

P pk, σ,Π, τ,Ct˚ q “
?
2k

«

1

σ2

´

2
?
kC2

t˚Π ` 4kCt˚∆̄2τΠ
¯

`
1

σ

˜?
2kCt˚

?
e

` 4
?
kC2

t˚Π `
2

?
2∆̄2Π
?
e

` 8kCt˚∆̄2τΠ `

?
2k∆̄2Π
?
e

`

c

2

e
Ct˚

¸ff

,

which is the final bound in (135).

5 Numerical experiments
In this section, we present numerical experiments which verify the bounds given by our main results, The-
orem 2, Theorem 4 and Theorem 8. To do this, we take an example of a source and sample configuration
and a Gaussian kernel for a given σ and solve the exact penalty formulation (28) of the dual problem (27)
using the level method [16], given in Appendix B. We introduce inaccuracies in λ by stopping the algorithm
early and show how these perturbations affect the source locations and weights. Next, we add noise to the
measurements to show how λ is affected. We are, therefore, able to compare the ratios of the perturbations
obtained numerically with the constants in the theorems to show the validity of our results in practice. The
specific details are discussed in the next subsections.

Setup

We place three sources at locations t˚i P T “ t0.25, 0.63, 0.889u with weights a˚
i P t0.8, 0.5, 0.9u and m “ 21

equispaced samples in r0, 1s, with a Gaussian kernel ϕptq “ e´t2{σ2

with σ “ 0.07. We show this configuration
in Figure 2.
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Figure 2: The source-sample configuration used for numerical experiments in the current section.
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Effect of λ˚ perturbations on t˚

We then solve the dual problem (27) in the exact penalty formulation (28) with box constraint parameter
τ “ 105 and penalty parameter Π “ 100 and run it for P “ 500 iterations. This gives an accuracy in the
source locations of |ti ´ t˚i | ď 10´8 for t˚i P T .

While it is possible to optimise the parameters τ , Π and P in order to obtain better accuracy in the
source locations ti and weights ai, it is not the aim of this section. Note that Theorem 2 gives the result
(18) in the form

|ti ´ t˚i | ď Ct˚ }λ´ λ˚}2,

where t˚i P T is an arbitrary true source location, λ˚ is the solution to the dual problem (27)7 and t is
obtained by perturbing t˚ as a consequence of the perturbation λ˚ in λ.

One way of showing that a relationship of the type of (18) holds in practice is to plot the ratio |t
ppq

i ´t˚
i |

}λppq´λ˚}2
,

for p “ p0, . . . , P and i “ 1, . . . , k, where P is the number of iterations the level method is run for, p
is the index of each iteration and t

ppq

i and λppq are the values of ti and λ obtained at iteration p, where
p0 ě 1 is large enough so that }λppq ´λ˚}2 satisfies the condition in Theorem 2. The level method computes
the value λppq after p iterations and tt

ppq

i uki“1 are obtained by calculating the global maxima of the dual
certificate qppqpsq “

řm
j“1 λ

ppq

j ϕps ´ sjq. Since we know the true value of t˚i , we can find t
ppq

i by running a
local optimisation algorithm with t˚i as the initial condition. For a large enough value of p, this will give an
accurate value of tppq

i and we can, therefore, calculate |t
ppq

i ´ t˚i | for each p “ p0, . . . , P and t˚i P T . Then we
check that:

|t
ppq

i ´ t˚i |

}λppq ´ λ˚}2
ď Ct˚ , (190)

for p “ p0, . . . , P and i “ 1, . . . , k. One issue is that the true value of λ˚ is not known. The best estimate
we have is λ˚

best “ λpP q, namely the value of λ˚ given by the level method after P iterations. Therefore, the
result of Theorem 2 cannot be verified directly in practice, but must be adapted to take into account this
inaccuracy. For i “ 1, . . . , k, we have that:

|t
ppq

i ´ t˚i | ď Ct˚ }λppq ´ λ˚}2

ď Ct˚

´

}λppq ´ λ˚
best}2 ` }λ˚

best ´ λ˚}2

¯

, (191)

and so

|t
ppq

i ´ t˚i |

}λppq ´ λ˚
best}2

ď Ct˚

˜

1 `
}λ˚

best ´ λ˚}2

}λppq ´ λ˚
best}2

¸

. (192)

For fixed P , which in the experiments in this section is P “ 500, }λ˚
best ´ λ˚}2 above is fixed and as p

approaches P , we have that }λppq ´λ˚
best}2 Ñ 0, and therefore the right hand side above goes to infinity. This

is not a problem for our results, as it is not relevant how the ratio |t
ppq

i ´t˚
i |

}λppq´λ˚
best}2

behaves for }λppq ´ λ˚
best}2 ď

}λ˚
best ´ λ˚}2.

We can then find a range for p where }λ˚
best´λ˚

}2

}λppq´λ˚
best}2

ď 1 and where we can see that

|t
ppq

i ´ t˚i |

}λppq ´ λ˚
best}2

ď 2Ct˚ . (193)

In Figure 3, we plot |t
ppq

i ´t˚
i |

}λppq´λ˚
best}2

for p “ 20, . . . , 270, where we see that the ratio is less than Ct˚ .

Specifically, we show the ratio }t
ppq

i ´t˚
i }

}λppq´λ˚
best}2

and the constant Ct˚ from Theorem 2 for each i P t1, 2, 3u.

7Note that the analysis of the dual problem (10) from Section 2 applies to the dual problem (27) considered in Section 3 as
well, as the only difference difference between (10) and (27) is a box constraint on λ.
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Figure 3: The result of Theorem 2 for T “ t0.25, 0.63, 0.888u, σ “ 0.07 and m “ 21. For each i P t1, 2, 3u,
we show the ratio of the error in ti and the error in λ compared to the constant Ct˚ given by Theorem 2.
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Effect of t˚ perturbations on a˚

In the case of Theorem 4, it is more straightforward to check the ratio of the errors, since we know the true
values of the source locations and weights, which we denote by t˚ “ rt˚1 , . . . , t

˚
k sT and a˚ “ ra˚

1 , . . . , a
˚
k sT

respectively. The error bound (26) given by the theorem is of the form:

}a´ a˚}2 ď Ca˚e
4}t´t˚}8

σ2 }t´ t˚}2 ` Op}t´ t˚}22q,

where t is the perturbed vector t˚ and a is the perturbed vector a˚ as a consequence of perturbing t˚. For
the values tppq

i , i P t1, 2, 3u, obtained after p iterations of the level method, we now solve the least squares
problem argminâ}Φppqâ ´ y}2 with the entries in the data matrix Φppq given by Φ

ppq

j,i “ ϕpt
ppq

i ´ sjq to find
the corresponding perturbed weights appq

i for i P t1, 2, 3u. Then, according to Theorem 4, we have that:

}appq ´ a˚}2

}tppq ´ t˚}2
ď Ct

a˚ ` Op}tppq ´ t˚}2q, (194)

where we write
Ct

a˚ “ Ca˚e
4}tppq´t˚}8

σ2 .

In Figure 4, we show the ratio }appq
´a˚

}2

}tppq´t˚}2
and Ct

a˚ in the same setting as in Figure 3, for iterations p “

20, . . . , 270.
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Figure 4: Plot of the ratio between }appq ´a˚}2 and }tppq ´ t˚}2 for p “ 20, . . . , 270, and the bound Ct
a˚ from

(194) in the setup described at the beginning of this section.

Effect of the noise w on λ˚ and t˚

As in the case of Theorem 2, where we rely on a best approximation λ˚
best of λ˚ for the numerical experiments,

a similar approach is required to check the validity of the results of Theorem 8 in practice. Theorem 8 gives
the bound (41) in the form:

}λ˚
w ´ λ˚}2 ď Cλ˚ ¨ }w}2,

where λ˚ is the true solution of the dual problem (27) and λ˚
w is the solution to the same problem with y

perturbed by the noise w.
As it is not possible to know exactly the values of λ˚ and λ˚

w, let λ˚
best “ λpP q be the value of λ given by

the level method after P iterations when y is exact and λbest be the value of λ returned by the level method
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after P iterations when y is corrupted by the additive noise w. Then we can reformulate the bound (41) in
terms of λ˚

best and λbest:

}λbest ´ λ˚
best}2 “ }λbest ´ λ˚

best ` λ˚ ´ λ˚ ` λ˚
w ´ λ˚

w}2

ď }λbest ´ λ˚
w}2 ` }λ˚ ´ λ˚

w}2 ` }λ˚ ´ λ˚
best}2

ď }λbest ´ λ˚
w}2 ` Cλ˚ }w}2 ` }λ˚ ´ λ˚

best}2, (195)

so
}λbest ´ λ˚

best}2

}w}2
ď Cλ˚ `

}λbest ´ λ˚
w}2 ` }λ˚ ´ λ˚

best}2

}w}2
. (196)

As before, we plot }λbest´λ˚
best}2

}w}2
, where λ˚

best is the solution we obtain by solving the dual problem (27) in its
exact penalty formulation using the level method with P “ 100 iterations and λbest is the ‘noisy’ solution,
which is obtained by solving the problem with P “ 100 iterations when y is corrupted by additive noise
w. We repeat this for different magnitudes of the noise w, which we increase gradually as follows. For each
component yj of y, we add a sample Xj from the standard uniform distribution Up0, 1q, multiplied by a
coefficient wc:

ynoisyj
“ yj ` wc ¨Xj . (197)

We repeat this for different values of the coefficient wc from the set:

wc P t0.000002, 0.000004, . . . , 0.00001,

0.00002, 0.00004, . . . , 0.0001,

0.0002, 0.0004, . . . , 0.001,

0.002, 0.003, . . . , 0.01,

0.02, 0.03, . . . , 0.1u. (198)

Therefore, in Figure 5 we show the basic setup described at the beginning of this section. Panel (a) shows
}λbest´λ˚

best}2 against the norm of the noise }w}2, and in order to check that the algorithm actually converges
to a useful λ˚

best, we also plot plot }tbest ´ t˚}2 against }w}2 in panel (b), since we know the true value t˚.

Then, in panel (c) we plot the ratio }λbest´λ˚
best}2

}w}2
and Cλ˚ as given by Theorem 8, where we see that the

ratio is smaller than the constant, as the theorem states. In the same plot, we also show the ratio }tbest´t˚
}2

}w}2

and we see that it does not grow as the magnitude of the noise increases. In these experiments we only take
into account 2k entries of λ and w, corresponding to the 2k samples that are the closest to the k sources, as
described in Section 3, for which Theorem 8 holds.

6 Conclusion
In this paper, we proved primal stability in the non-negative super-resolution problem, when addressed via
convex duality. The main ingredient in our analysis is a quantitative version of the implicit function theorem,
a folklore result in the theory of dynamical systems community.

In the noise-free setting, our results provide quantitative bounds in terms of the number of measurements
for the accuracy of the primal solution with respect to the convex dual problem solution in an ℓ8 error bound
on the primal spike locations and an ℓ2 error bound on the spike weights. In the case when the measurements
are corrupted by additive noise, we have proved a similar result for how the dual variable is perturbed as a
function of the magnitude of the noise.
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Figure 5: Plots of }λbest´λ
˚
best}2 (panel(a)), }tbest´t}2 (panel (b)) and their ratio to the noise }w}2 (panel(c))

for }w}2 in a range as given in (197) and (198), in the setting described at the beginning of this section.
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A Duality in the noisy case
In this section, we show the duality of the following problems:

min
xě0

›

›

›

›

y ´

ż

Φptqxpdtq

›

›

›

›

1

subject to }x}TV ď Π,

which is given in (9), and

max
βą0
λPRm

β
´

λT y ´ Π
¯

subject to λTΦptq ď 1, @t P r0, 1s and }λ}8 ď 1{β, (199)

which is a more general version of the dual problem (27). We start from the primal problem (9) by introducing
a new variable z “

ş

Φptqxpdtq:

min
xě0
zPRm

}z ´ y}1 subject to z “

ż

Φptqxpdtq,

}x}TV ď Π, (200)

and then we write the Lagrangian:

Lpx, z, β, λq “ }z ´ y}1 ` λT
ˆ

z ´

ż

Φptqxpdtq

˙

` β
`

}x}TV ´ Π
˘

, (201)
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so the Lagrangian dual problem is:

max
βě0
λPRm

min
xě0
zPRm

Lpx, z, β, λq “

“ max
βě0
λPRm

min
xě0
zPRm

„

}z ´ y}1 ` λT z `

ż

´

β ´ λTΦptq
¯

xpdtq

ȷ

´ βΠ

“ max
βě0
λPRm

min
xě0

wPRm

„

}w}1 ` λTw `

ż

´

β ´ λTΦptq
¯

xpdtq

ȷ

` λT y ´ βΠ, (202)

where in the last equality we make the substitution w “ z ´ y.
The integral on the right hand side is equal to ´8 if there exists t0 P r0, 1s such that λTΦpt0q ą β, as we

can set x “ 8 ¨ δt0 . Therefore, we impose the condition that λTΦptq ď β for all t P r0, 1s, in which case the
integral is equal to zero by taking x to be zero wherever the integrand is non-zero, and the dual becomes:

max
βě0
λPRm

min
wPRm

´

}w}1 ` λTw
¯

` λT y ´ βΠ subject to λTΦptq ď β, @t P r0, 1s. (203)

which can be rewritten as:

max
βě0
λPRm

´ max
wPRm

!

´λTw ´ }w}1

)

` λT y ´ βΠ subject to λTΦptq ď β, @t P r0, 1s. (204)

and note that for fpwq “ }w}1:

f˚pλq “ max
w

!

λT p´wq ´ } ´ w}1

)

“

#

0, if }λ}8 ď 1,

8, otherwise,
(205)

is its conjugate [20]. Therefore, we impose the condition that }λ}8 ď 1 and the dual becomes:

max
βě0
λPRm

λT y ´ βΠ subject to λTΦptq ď β, @t P r0, 1s and }λ}8 ď 1. (206)

We then make the substitution λ1 “ λ{β (for β ą 0) to obtain:

max
βą0

λ1
PRm

β
´

λ1T y ´ Π
¯

subject to λ1TΦptq ď 1, @t P r0, 1s and }λ1}8 ď 1{β, (207)

which is the problem (199).
Note that if we fix β and solve for λ1, given that we are interested in the value of λ1 rather than the value

of the objective function, the problem above becomes:

argmax
λ1PRm

λ1T y subject to λ1TΦptq ď 1, @t P r0, 1s and }λ1}8 ď 1{β, (208)

which is the problem (27) that we consider in Section 3.

B The level bundle method
In this section, we describe the level bundle method [16] applied to (28) for which experiments were presented
in Section 1.1 and Section 5. The algorithm progressively builds up a polyhedral model of the objective
function from a ‘bundle’ of subgradients at each iteration. The algorithm proceeds by projecting iterates
onto a level set of the model, an approach which is known to improve robustness in comparison with the
standard cutting planes subgradient method (Kelley’s method). A statement of the algorithm is given in
Algorithm 1.

In the experiments shown in Section 1.1, Π was chosen to be 2}a˚}1 and the level set parameter α was
taken to be 1{4.
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Algorithm 1 Level bundle method for solving Program (28).

Input: Kernel function Φ : I Ñ Rm, measurements y P Rm, sample locations tsjujPt1,...,mu P I, penalty
parameter Π ą 0, level set parameter α P p0, 1q and number of iterations L.

Initialize: l “ 1.

While l ď L , do

1. Compute a subgradient as
tl P arg sup

sPI
pλl´1qTΦpsq,

gl “

#

´y ` Π
“

pλl´1qTΦptlq ´ 1
‰

, pλl´1qTΦptlq ě 1
´y, pλl´1qTΦptlq ă 1

2. Build the polyhedral model

pΨl
Πpλq “ max

r“1,...,l
ΨΠpλr´1q ` pgrqT pλ´ λr´1q.

3. Compute νl “ inf
λ

pΨl
Πpλq and µl “ min

r“1,...,l
ΨΠpλrq.

4. Project onto the level set as λl “ PLl
α

pλl´1q where Ll
α “ tλ : pΨΠpλq ď αµl ` p1 ´ αqνlu.

5. l “ l ` 1.

Output: λL P Rm.
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