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Abstract

We study the problem of super-resolution, where we recover the locations and weights of non-negative
point sources from a few samples of their convolution with a Gaussian kernel. It has been shown that
exact recovery is possible by minimising the total variation norm of the measure, and a practical way of
achieve this is by solving the dual problem. In this paper, we study the stability of solutions with respect
to the solutions dual problem, both in the case of exact measurements and in the case of measurements
with additive noise. In particular, we establish a relationship between perturbations in the dual vari-
able and perturbations in the primal variable around the optimiser and a similar relationship between
perturbations in the dual variable around the optimiser and the magnitude of the additive noise in the
measurements. Qur analysis is based on a quantitative version of the implicit function theorem.

1 Problem setup

In the study of non-negative super-resolution, the aim is to estimate a signal x which consists of a number
of point sources with unknown locations and non-negative magnitudes, from only a few measurements of the
convolution of z with a known convolution kernel ¢. This is a problem that arises in a number of applications,
for example fluorescence microscopy [1], astronomy [2| or ultrasound imaging [3]. In such applications, the
measurement device has a limited resolution and cannot distinguish between distinct point sources that are
close to each other in the input signal x. This is often modelled as a deconvolution problem with a Gaussian
kernel.

Specifically, let & be a non-negative measure on I = [0, 1] consisting of k£ unknown non-negative point

sources:
k

T = Z a;0t,
i=1

with a; > 0, for all ¢ = 1,...,k, and let y; be the possibly noisy measurements obtained by sampling the
convolution of z with a known kernel ¢ at locations s;:

k
Y; = L(b(t - sj)x(dt) +w; = Z a;op(t; — Sj) + wjy, (1)
i=1
for all j =1,...,m or, in vector notation:
k
y = Z a; ®(t;) + w, (2)
i=1



where

y=1[y1- - yml”, (3)
(I)(t> = [¢(t_31)a"-7¢(t_sm)]T7 (4)
w = [w,..., wn]". (5)

Of particular interest is the case of the Gaussian kernel:

o(t) = e /7", (6)

where ¢ is assumed to be known to the practitioner.
In the setting where the measurements y are exact, namely when w = 0, the signal x can be recovered
by solving the following problem:

m>i51 |z|rv subject to y= J O (t)x(de), (7)
x> I

where | - |7y is the Total Variation (TV) norm for Radon measures defined as
el =sup { [ v e . lule <1} 0
When additive measurement noise is present, the signal x can be recovered as the solution to

min
=0

such that |z|ry <II, 9)

yfﬁ¢wua>

1

where II plays the role of the regularisation parameter. Opting for an /;-type fidelity term is a reasonable
choice in a robust estimation framework, as discussed in e.g. [4].

In the context of problems (7) and (9), in this manuscript we give bounds on the errors in the source
locations {t;}¥_, and weights {a;}¥_, as a function of the errors in the dual variable when solving the dual
problem, which we then extend to the case when the measurements are corrupted by additive noise, where
we give an exact dependence of the error in the dual variable on the level of noise. A subset of the results
in this paper have been presented in the conference article [5].

The problem of super-resolution has been studied extensively in the literature since the seminal paper [6],
which addressed the case of complex amplitudes. Since the original contributions of Candés and Fernandez-
Granda, there have been numerous follow-up results such as the ones by Schiebinger et al. [7], Duval and
Peyré [8], Denoyelle et al. [9], Bendory et al. [10], Azais et al. [11], Eftekhari et al. [12, 13] and many
others. For instance, the authors of [7] consider the noiseless setting by taking real-valued samples of y with
a more general choice of ¢ (such as a Gaussian) and also assume z to be non-negative as in the present work.
Their proposed approach again involves TV norm minimization with linear constraints. Bendory et al. [10]
consider ¢ to be Gaussian or Cauchy, do not place sign assumptions on x, and also analyze the TV norm
minimization with linear fidelity constraints for estimating = from noiseless samples of y.

1.1 Main goals of our study

A standard way to approach problem (7) is by considering its dual:

max yTA subject to AT®(t) <1 Vtel, (10)
which is a finite-dimensional problem with infinitely many constraints, known as a semi-infinite program
(SIP). One of the main motivations for the study of the dual problem stems from the fact that this dual
problem is finite (and even sometimes low) dimensional and as such, is amenable to efficient optimisation al-
gorithms such as exchange methods [14] or sequential quadratic programming [15]. Moreover, the constraints
AT®(t) < 1,Vt € I can be handled using an exact penalty approach, i.e. can be reformulated as

. T T
min —y A+C- max{sgp (A d(s) — 1) »0} ; (11)
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Figure 1: (a) Solution and dual certificate obtained using the level bundle method. (b) Decrease in optimality
gap with iteration number.

for a penalty parameter C, thus making the problem amenable to non-smooth optimisation algorithms
such as bundle methods [16, 17]. To illustrate the use of such methods for solving the dual problem, we
present the result of an experiment in which we use the level bundle method [16] to solve a continuous
sparse inverse problem of the kind introduced in this section. Here a signal (consisting of five spikes with
locations {0.2,0.4,0.6,0.7,0.75} each with amplitude 1) is convolved with a Gaussian kernel ¢(t) = e=**/7"
with o = 0.1 and sampled at 15 equispaced points on [0, 1]. The dual problem is solved using the level bundle
method, and the spike locations are identified from the global maximisers of the dual certificate obtained.
Figure 1(a) displays the recovered solution using the level bundle method along with the corresponding dual
certificate, showing that the method is able to recover the signal to high accuracy even though the minimum
separation is somewhat small (0.05). Figure 1(b) shows the speed of convergence in terms of the decrease in
the optimality gap (the model gap - see Appendix B). We observe linear convergence in practice.

Solving the dual problem for A leads to the dual certificate, a function of the form g(s) = Z;’;l Ajd(s—s;)
(defined in Section 2), whose global maximisers are the source locations {t;}¥_,. The weights {a;}}_, are
then found by solving a least squares problem using the measurements and the source locations. Using the
idea of dual certificate, our perturbation results are quite intuitive: the locations of the global maximisers
of the dual certificate are perturbed when A is perturbed, which leads to perturbed source locations ¢;.
Providing a quantitative analysis of the recovery error as a function of the error in the dual solution is the
main goal of the present work. In addition, we extend the analysis to the noisy setting, where we give the
explicit dependence of the error of the dual solution on potential additive noise in the measurements.

1.2 Owur contributions

In this paper, we restrict our study to the case of Gaussian kernels. Our main results are the following

e In the setting of exact measurements, we provide bounds on how far the estimated locations t; and
magnitudes aj are from their true values as the dual variable A is perturbed from its optimal value \*
when z is recovered by solving the dual problem (10). These bounds are given in Theorems 2 and 4.
These give us an insight into the size of the error in the locations and magnitudes when we apply an
optimisation algorithm to the dual of the super-resolution problem.

e In the setting of measurements corrupted by additive noise, we leverage the perturbation bounds
obtained for the noiseless case in order to study the impact of additive noise in the observations, when
the signal is recovered by solving the alternative problem (9). For this purpose, we make precise links
between the dual solutions to (9) and (10). Our main result for this noisy setup is Theorem 8, where
we give an explicit bound on the impact of noise on the estimation of the dual solution to (10). This
makes again the case for the study of (10) under perturbation.



While the bounds given in these theorems apply only to the case when the convolution kernel is Gaussian,
the same techniques can be applied to obtain perturbation bounds for other kernels, with a few differences
in the way some sums in the proofs are bounded, which would would be specific to the kernel used.

1.3 Comparison with previous work
1.3.1 Alternative formulations for the noiseless setting

For the particular case of non-negative x, Boyd et al. [18] proposed an improved Frank-Wolfe algorithm
in the primal. In certain instances, for e.g., with Fourier samples (such as in [6, 19]), the dual, which is
a SIP, can also be reformulated as a semi-definite program (SDP). From a practical point of view, SDP is
notoriously slow for even moderately large number of variables. The algorithm of [18] is a first order scheme
with potential local correction steps, and is practically more viable.

As already mentioned, the main reason we advocate for using the dual problem (10) is that exact penalty
can be used in order to reformulate the dual problem as a non-smooth minimisation problem for which
methods such as bundle methods [16], [20] are efficient in practice. To the best of our knowledge, there
is no analysis of the impact of obtaining approximate solutions of the dual on the quality of the recovered
locations.

1.3.2 The penalised least squares approach

The approach adopted in [8, 9] is to solve a least-squares-type minimization procedure with a TV norm based
penalty term (also referred to as the Beurling LASSO (for example [21])) for recovering x from samples of
y. The approach in [22] considers a natural finite approximation on the grid to the continuous problem, and
studies the limiting behaviour as the grid becomes finer; see also [23]. These works develop a perturbation
analysis which is different from ours since it applies to specific types of perturbations of a different problem
(€5 vs. £p type fidelity terms), and do not provide precise quantitative dependencies with respect to all the
parameters of the problem.

1.3.3 The Prony/Matrix Pencil approach

Another efficient approach is the one of [24] based on the original work of Hua and Sarkar [25] using a
Matrix Pencil approach, and recently extended to the multi-kernel setting in [26]. Perturbation analysis of
the Matrix Pencil approach is provided in [24]; see also [26] for a more detailed exposition of these results
with the correct order of dependencies. The reason we develop an analysis of the dual problem (10) here
is that it easily extends to the multidimensional setting as well, at least for small dimensions. In contrast,
the Matrix Pencil method, although very efficient in one dimension, becomes much more involved in several
dimensions [27].

1.4 Plan of the paper

We start by presenting the noise-free perturbation results related to problem (10) in Section 2, followed by
the perturbation results in the setting when the measurements are corrupted by noise in Section 3. The
proofs of our results are given in Section 4 and we show numerical experiments to verify the validity of our
results in practice in Section 5. Lastly, we conclude the paper in Section 6.

2 Bound on the error as ) is perturbed — the noise-free case

In this section we present our first main results, namely two theorems that give bounds on the perturbations

around the source locations #; and the magnitudes a; respectively, as the dual variable is perturbed away

from the optimiser A*, when the convolution kernel is a Gaussian with known width o as defined in (6).
First, let us briefly give an informal statement of the main results in this section.

Informal Theorem. (Stability of primal recovery) Let \* € R™ be a solution of the dual program (10)
with ¢ Gaussian and A a perturbation of \* in a ball of radius 0y, given in Theorem 2 and let t*,a* be the



vectors of source locations and weights in the true signal x and t,a respectively their perturbations due to \.
Then, the error between t* and t is bounded by:

I8 —t* 2 < VECyx X — A*2. (12)

Moreover, if the above error is bounded by &, given in Theorem /, then the error between a* and a* is
bounded by: } )
&~ a*lo < Cux |t — t*12 + O(JE — £*13). (13)

As the two error bounds above are derived independently using different ideas, we will discuss them
individually. Before giving the exact statement of each theorem, we define the concept of dual certificate,
which plays an important role throughout this paper.

Definition 1. (Dual certificate) Consider a solution \* of the dual problem (10) or (27). Then a dual
certificate is a function of the form

g(t) = DI NEp(t —55) = X D(1), (14)
j=1
which satisfies the conditions:
q(t;) =1, Vi=1,...,k, (15)
qt) <1, Vt#t;,Vi=1,... k. (16)

The idea of dual certificate is common in the super-resolution literature, and we know that the global
maximisers of g(¢) correspond to the source locations {t;}¥_; (see, for example [6, 7, 13], Once these are
found, amplitudes {ai}le are obtained by solving a linear system.

We are now ready to discuss the perturbation results in the noise-free setting. In the following theorem,
we consider the dual (10) of (7) and quantify how the source locations given by the global maximisers of the
dual certificate formed by the dual solution A* are affected by perturbations of \*.

Theorem 2. (Dependence of |t —t*| on |A — X\*|3) Let \* € R™ be a solution of the dual program (10)
with ¢ Gaussian as given in (6) such that the the dual certificate q(s) defined in (14) satisfies conditions
(15) and (16), X a perturbation of N\* in a ball of radius 65 and t an arbitrary local mazimiser of qx(s) =
Z;nzl Ajo(s — s;). Note that, for X = X*, the corresponding local (and global) mazimiser t* of g« = q is

a true source location in {t;}¥_,. Let R = @ and ¢ ~ 3.9036 o universal constant. If the radius 0y is
bounded by
1"(4%)|2 43
G RN )
4V2(2+cR)m
then
[t =17 < Cox A = A2, (18)
where
1 2v2m(2 + cR
Cpw = m(2 + cR) (19)
4+ cR lq" (t%)|/e
(20)

Proposition 3. (Simplified C,x) Under the conditions of Theorem 2, the constant Cyx can be further
bounded by:
1 2v2  ym

Cix < -+

4 Ve gt

(21)



The proofs of Theorem 2 and Proposition 3 are given in Section 4.1. As a brief summary, Theorem 2
is proved by applying the implicit function theorem to the function F'(¢, \) = ¢'(¢), where ¢(t) is the dual
certificate given in Definition 1, since we know that F'(¢*, A*) = 0. This allows us to express ¢ as a function
t(A) in a neighbourhood of (t*, A*), and a quantitative version of the theorem [28] gives an explicit expression
for 0 t(A\) and the neighbourhood in terms of the derivatives of F. By bounding this derivative and the
neighbourhood and then applying a truncated Taylor expansion to ¢(A), we obtain the result of Theorem 2.

One of the main conclusions which can be drawn from this result is that the primal spike location error is
controlled in I, but degrades as a function of the number of measurements in the order of v/m. Alternatively,
we can write (18) in terms of the ¢3 norm of the error between the vector of true source locations t* and the
perturbed source locations t:

It —t*2 < VECu |\ — A*|.

Of crucial importance is the curvature of the dual certificate at the true solution: the flatter the certificate,
the worse the estimation error. Qur theorem also gives important information about the accuracy in the dual
variable required to guarantee our upper bound on the error of recovery. This accuracy is of the inverse order
of the number of measurements, which is quite a stringent constraint. Both the m and the 1/m factors are a
consequence of the way we bound sums of shifted copies of the kernel, namely Z;":l o(t—s;) < mmaxer ().
Given the fast decay of the Gaussian, it is clear that this is not a tight bound. However, any bound would
reflect the density of samples close to each source location.

We will now give a result regarding the perturbation of the magnitudes a; when A\* is perturbed. Let ®
be the matrix whose entries are defined as

D5 = o(tj — s1), (22)
and t* and a* the vectors of source locations and weights:
t* = [t1,...,tx]7, a* =[ay,...,ax]".

When we solve (10) exactly, we obtain the source locations by finding the global maximisers of ¢(s). Then,
the vector of weights a* is found by solving the system

Pa =y.
When the source locations are perturbed, we denote the resulting perturbed data matrix by:
d=0+E, (23)
and we calculate the vector of perturbed weights a as the solution of the least squares problem

min|$a — y],. (24)

The following theorem, proved in Section 4.2, gives a bound on the error |a* — a||s between the vector of
true weights a* and the vector of weights a obtained by solving the least squares problem (24) with the
perturbed matrix ®, as a function of the error |t — t*|2 between the perturbed source locations t and the
true source locations t*.

Theorem 4. (Dependence of [a—a*|s on [t —t*||l2) Let t* € [0,1]* be the vector of true source locations,
t € [0,1]% the perturbed source locations in a ball of radius §;, a* the vector of true weights and a the vector
of perturbed weights obtained by solving problem (24). If the radius &; is bounded by:

JQUmaX((I)) 1+ U?‘ﬂin(q))
4t/ \/m T max(®)

where Tmax(P), omin(P) are the largest and respectively smallest singular values of the matriz © defined in
(22), then:

8 < —1], (25)

|a —a*|s < Cuxes ™9 B=UIE — %], + O(JE — t*[3), (26)
where
o _ Wmla®|s
a¥ T 5 xN-
g O'min(q))



Note that we write the O([[t — t*|3) term in the bound above in order to simplify the presentation of the
result. We can, however, calculate the constants corresponding to the higher order terms in the bound by
using the inequality (123) in the proof of Theorem 4 in Section 4.2. For example, the constant in the second
order term is equal to C2, /[a* |z [1 + 202, (®)/02,:,(®)].

3 Bound on |A — X\*||; in terms of the noise w

In this section we assume that the measurements are corrupted by additive noise and we give a result where
we bound the perturbation in the dual variable A around the minimiser A* as a function of the noise w in
the measurements. Specifically, the noisy measurements are defined as in (1):

k

Yj = L¢j(t)$(dt) +wy = ) aid(t) + wj,

i=1

forw; #0and j=1,...,m.

The aim is to estimate how the source locations {t;}¥_; and weights {a;}}_; are affected by the additive
noise w in the measurements around the solution of the problem. In the previous section we have established
how the source locations and weights are perturbed around their true values as the dual variable A is
perturbed around its optimal value A*. In the noisy setting, we want to establish a precise quantitative
relationship between the perturbations of A around A\* and the magnitude of the noise.

Before we state the main result, which gives a relationship of this kind, first we need to describe the exact
mathematical setting under which the result holds. Then we introduce the function F in (39) to which we
apply the implicit function theorem, whose Jacobian is crucial for this result.

In order to account for noise in the measurements, we consider a slightly modified version of the dual
problem (10). To be specific, we use an additional box constraint on the dual variable A and obtain the dual
problem:

max y"X such that M'®(t) <1, Vtel,
€ m

and A < 7, (27)

which is the dual of (9) and whose derivation is given in Appendix A. The parameter 7 is the inverse of the
Lagrange multiplier corresponding to the constraint in (9), and therefore it plays the same regularisation role
as II. Looking at the specific formulation of the primal problem (9), we can see that it takes measurement
noise into account by doing ¢; minimisation of the error instead of requiring the measurements to be satisfied
exactly.

To motivate the exact form of the function F in (39) to which we apply the implicit function theorem to
obtain the perturbation result from Theorem 8, consider the exact penalty formulation of (27):

min Ur(\) such that ||A|e < 7, (28)
AER™
where
U(\) = —yT A + I - max { sup Z Ajo(s —sj)—11,0 4. (29)

S ,]=1
For a large enough value of TI, a solution to (28) which satisfies the constraints in (27) is also a solution of
(27) (see, for example, Section 1.2 in [20]). This is a non-smooth optimisation problem and its solution can
be found by using any method that relies on calculating subgradients, for example the level method [16].

A subgradient of Ur(A) has the form:

—y—&-HZf::l vig(sf), (n+...+vy=1) it sup, 251, Ajo(s — s5) > 1,
OV =< —y + U wig(s®), (n+...+ww <1) it sup, D51, Ajo(s — s5) =1, (30)
—Y, it sup, 370, Ajé(s —s5) <1,



where {s*}¥ | are the global maximisers of the function 21 Ajd(s — s5), the vectors g(s) are of the form
g(s) = [o(s —51),...,0(s —sm)]T and v; = 0 for all i = 1,...,k’. Note that here we apply the formula for
the subgradient of the max function and for the sup function (see for example [20]). The coefficients in the
convex combination from the formula for the subgradient of the max function with zero account for the case
when v1 + ...+ v < 11,

As in the noise-free setting, we assume here that the dual solution A\* forms a dual certificate, namely
the function ¢(s) as defined in (14) satisfies conditions (15) and (16). Then, the subdifferential at A* has
the form:

k
oUnp(\*) = —y +11 Z vig(ti), (31)
i=1

where {t;}*_, are the source locations, so the optimality condition for (28):

0 € oV (\*), (32)
is equivalent to:
k
y=T0) vig(ts), (33)
i=1
for some vq,...,vp = 0 with 17 + ... + v, < 1 and for w = 0. Note that, given the definition of y from (1),
the optimality condition (33) is satisfied for
uF%, Vi=1,...,k (34)
w; =0, Yj=1,...,m, (35)

where in order to satisfy v1 + ... 4+ vx < 1, we need II such that:
I>za +...+ay, (36)

which is the same as the constraint in (9).
Motivated by the above reasoning, we now want to apply the quantitative implicit function theorem, as
given in [28], to a function F' of the form:

k k
P, w) = 3 aid(t) = Y nd (i) + w, (37

where we know that F([A\*,a]’,0) = 0. For the sake of simplicity, we include the parameter IT in the
coefficients v;, so in the second sum in F' each v; actually corresponds to Ily;, and vq + ... + v, < II rather
than vy + ...+ v, < 1.

However, note that F : R™** x R™ — R™ and in order to apply the implicit function theorem to obtain
the dependence of the first argument of F' as a function of the second argument, it is required that spaces of
the first argument, the second argument and the codomain of F' have the same dimension. To overcome this
issue, we assume that the solution we work with has a few particular properties, since the dual certificate,
given in Definition 1, is not unique in general. As before, we will assume that the solution A\* to the dual
problem (27) satisfies the dual certificate condition. In addition, we assume the existence of a solution A* of
(27) as follows:

Definition 5. Let \* € R™ be a solution to the dual problem (27) with m —k entries on the boundary of the
box constraint of (27) i.e. there exist indices Y1, ..., Ym—k € {1,...,m} such that )\Z‘;j =47,57=1,....,m—k.

Then we define \* e RF to be the vector that consists of the non-fived entries of A\*, in the same order, and
X € RF a perturbation of \*.

IMore specifically, both functions in the max attain their maximum, so we have that

oV, = —y+ 11 [alasups (Z;"Zl Ajp(s —s5) — 1) + 04260], with a1,a2 > 0 and a1 + a2 = 1, and therefore 0¥, = —y +

HZf;l anvig(s¥), with vf + ...+ v, =land 0 < a; < 1.



In practice, such a solution \* would be achieved due to the complementarity conditions at optimality
corresponding to the box constraint |A| < 7. Similarly, we define a vector consisting of 2k entries of ®(¢)
in (4).

Definition 6. Let 6§ := {0y,...,0o1} = {1,...,m}. Then we define ®y(t) to be the vector consisting of the

entries of ®(t) in (4) corresponding to the indices in 0:

(59 (t) = [¢<t - 891)7 ¢(t - 892)7 ) (b(t - Sezk)]T' (38)
We will also use ®(t) to denote ®g(t) when the specific choice of 0 is not relevant in the context.

Lastly, given the definitions of A and ®y(t) above, we define the following function to which we will be
able to apply the implicit function theorem:

Definition 7. Let \* € R™ be a solution of (27) with m — k fized entries and \* € R* consisting of the
non-fized entries of \*, as given in Definition 5, and let ®¢(t) be given as in Definition 6 for an index set 0 of
2k indices between 1 and m. Then, for the perturbation A of \*, we define the function F : R?¢ x R?* — R2k
as:

k
F(AV)T we) = Y a;dg(t Z vi®o(ti(N)) + wo, (39)
i=1
where t;(\*) = t¥, fori =1,...,k, are the source locations corresponding to \* and wg € R?** contains the

entries of the noise vector w € R™ corresponding to the indices in 0.

We can now state the main result of this section, namely a bound on the perturbation of \* (or more
specifically A*) as a function of the measurement noise. The proof is given in Section 4.3.

Theorem 8. (Dependence of |\ — \*||2 on the noise w) Let \* € R™ be a solution to the dual problem
(27) with w = 0 , namely the optimal solution of (27) with noiseless measurements, which satisfies the
conditions in Deﬁmtzon 5, and the vector \* € R¥ of non-fized entries of \*. For the function F in
Definition 7, let J* be its Jacobian with respect to the first variable, evaluated at ([\*,a]T,0) and omin(J*)
its smallest singular value. We also assume that the solution \* forms a dual certificate, namely the function
q(t) defined in (14) satisfies conditions (15) and (16). If J* is invertible, |w|2 < &, and

e <2 (145, (40)

o2

then, for a perturbation X of \* with the same fixed entries to the boundary of the box constraint, we have
that:

X=X, < Cox - Jully, (41)
where
Chx = L (42)
AT Umin(J*)’
Umin(']*)Q
= 4
Ou AP(m, k,o, 11, 7,Cx)’ (43)
and

P(m, k,0,11,7,Cp) = v/2 kl (2{ H+4kCt*A27-H)

L 2V28,11 - AT [2
+U<W0t* + 4WWECATI V228, QJF ect*> , (44)

AvTall
\[ \/é + 8kCyx A7l + \/E

where Cyx 1s given in (19) in Theorem 2, ¢ ~ 3.9036, co = 4 + % ~ 7.3484 are universal constants and

AQ = @ (@C’t*mT + mo) . (45)

ot Ve



The theorem above makes explicit the dependence of the perturbation in the dual variable A around the
solution A\* on the additive noise w in the measurement vector y, with the assumption given in Definition 5.
This is a linear relation where the constant depends on the specific configuration of the problem we are
solving, namely the locations and weights of the sources, and width of the Gaussian and the sampling
locations. The theorem also gives an upper bound on the magnitude of the noise where this result holds as
a function of the same parameters.

As an additional interpretation of Theorem 8 regarding the assumption on the fixed entries in A and A\*,
it states that, for a solution A to the dual problem (27) with noisy measurements that has m — k entries
equal to the boundary of the box constraint, there is a solution A* to the noise-free dual problem w = 0
with the same entries fixed to the boundary of the box constraint and the error for the remaining k entries
bounded by (41).

Moreover, under a few additional assumptions, we give a simplified approximation of the constant P in
(44) for clarity:

Proposition 9. (Simplified P) Under the conditions of Theorem 8 and, in addition, if II, 7 < 1, then:
mk5/2Ct2* >

06 (16)

P(m,k,0,Cix) = O (

One important observation is that, while the above result only applies to a subset of the entries in A and
w, which entries are selected is not arbitrary. The choice of the entries in A and w reflects which samples s;
contain the most information, and therefore which noise entries in w affect the solution to the optimisation
problem the most. More specifically, in order for the Jacobian J* to be invertible, we are led to select the
samples (and therefore A and w entries) that satisfy this condition the best, namely the ones that are the
closest to the source locations. We discuss this aspect in more detail in Section 3.1.

Lastly, note that the results in Section 2 and Section 3 refer to different optimisation problems: the duals
(10) and (27) of problems (7) and (9) respectively. However, the proofs of our perturbation results rely on the
property that the dual solution A\ forms a dual certificate, the global maximisers of which give the locations
of the point sources in the input signal x, with the additional bound on A from (27) being used in the proof
of Theorem 8. Moreover, since our analysis is independent of the exact formulation of the primal problems,
we can conclude that the results from both Section 2 and Section 3 apply to the problem of super-resolution
in the noisy setting, namely they give bounds of the perturbations of the source locations and weights as a
consequence of noise in the measurements.

3.1 Discussion

One of the conditions in Theorem 8 is that the Jacobian J* is invertible. While we do not provide a rigorous
analysis of the conditions in which this is satisfied, in this section we discuss in more detail what the condition
requires and give further motivation for why it is true in a reasonable scenario. Specifically, we assume that
the samples that are used for calculating the Jacobian are the closest samples to the sources, i.e. the set 6
for which we define F' in Definition 7 contains the two indices corresponding to the closest two samples to
each source location, for each of the k sources. Therefore, the rows in the system given by F in (39), as well
as the entries in \ and the entries in the noise vector wy, correspond to these samples.

Recall that J* is the Jacobian of the function F from (39) with respect to the first argument. The entries
in J* are:

k
O5, F(IN )" w) [soxe = = D) aid) (87 — s0,)05,t:(A¥) (47)
s i=1
k /(4% /(4%
B (£ — 59 )0 (tF —
:Zazcb(z jej)f(z Sz)7 (48)
b q"(t7)
forl=1,...,k, j=1,...,2k, where {s;}F_, correspond to the non-fixed entries of A (i.e. A\) and
aVLF([j"V]T7w9) A=2* T —¢(ff - 593')’ (49)
wp=0
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forl=1,...,k, j=1,...,2k, where in the first equality we used (59) with (63) and (64) plugged in, so the

result holds under the conditions in Theorem 2, namely for A with |[A — A*|2 < 0, where dy is given in (17).
Writing J* as

J* =[], (50)

where the entries in the blocks Jy and .J, are given by (48) and (49) respectively, we have that:

()7, (51)

and ~ B
Sy = —[2@T) ... 2(t})], (52)
where
B(t) = [o(t — s6,), -, Bt — 56,)]", (53)
() = [¢/(t = 50,),- -, ' (t = s0,)]" (54)
Note that rank(J,) = k by the T-systems property of the Gaussian (assuming that the ¢; < ... < t; and
so, < ... < Sp,,) and in order for the matrix J* to be invertible we need rank(J*) = 2k, as it is a square

matrix with 2k columns. By rewriting the columns of Jy, we have that:

x _ ai¢' (tF —s1) =, 4 ¢ aid (t — Sk) 21/ O d (% _ B(+*
= ;7(1,,(” PiF) . ; et (GO ORI Ol

and by taking its determinant and using the multi-linearity property of the determinant with respect to its
columns, we have that:

£y k&

et T = U am oam

k! k

SIS @) =) |[P@ ) . R@(E) &) ... S, (56)

=1 \i=1

where P, for [ = 1,..., k! are the permutations of k elements. Note that when we expand the determinant,
the terms in the final sum are determinants with all the possible combinations of the vectors in each sum,
which results in most determinants having repeated columns, so they are equal to zero. The only NON-zero
determinants in the resulting sum are the ones where the first & columns are the vectors {®’(t)}%_; and their
permutations, multiplied by the corresponding constants. We now order the columns of the determmant

aj...ag

Y T
det(J*) = (—1) ¢"(tF) ... ¢"(tF)

k! k
Zszgn l_[¢’ si) ||@() @(¢) ... @th) ()],
44&%@ gy B .. D) ()

k!

k
D sign(P) | [T/ (R(t)) = s:) | (57)

where by sign(P;) we denote the sign of the determinant corresponding to the permutation P; after reorder-
ing the columns as above. Because of the extended T-system property of the Gaussian function [29], the
determinant above is strictly positive. The dominant term in the sum is the one corresponding to the identity
permutation, where for each ¢ = 1,...,k, the sample s; is the closest sample to the source location ¢}. As
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the samples get further, the terms of the sum approach zero. This can be expressed more quantitatively by
imposing explicit conditions on the distances between the closest samples and the sources, the separation of
sources and the separation of samples, as done, for example, in [13].

As a last remark to motivate the choice of the dimension of A* and X in Definition 5, note the expansion in
(56) of det(J*). If the vector A had more than k entries, then the columns consisting of the permutations of
®’(t¥) would inevitably be repeated, since there are k sources t¥ and more than k such columns. This implies
that all the determinants in the sum would be zero and, therefore, J* would not be invertible, implying that
Theorem 8 would not be true in this case. This explains why choosing A to contain more than k entries of
A would be incompatible with our analysis in the proof of Theorem 8.

4 Proofs

In this section we present the proofs of the theorems from Sections 2 and 3.

4.1 Proof of Theorem 2 (Dependence of |t — t*| on |A — \*|3)

Let t* be an arbitrary local maximiser of the function ¢(¢) in (14), so t* is also a source location, and \*
the solution to (10). The key step in this proof is applying a quantitative version of the implicit function

theorem [28] to the function:
m

F(t,A) = 2, e/ (t = s)), (58)

where F(t*,A\*) = 0 because t* is a maximizer of ¢(s) in (14). The theorem allows us to express t as a
function ¢(\) of A with:

ONEN) = — [0 F (), V)] anF (M), M), (59)

for ¢ in a ball of radius §y around t* and for A in a ball of radius §; < dy around A\*, where &g is chosen such
that

_ 1
sup T — [a,F(t*, A%)] ' aF(t, A)H <z (60)

(t,A\)eVs 2

where Vs = {(t,\) e R™*! 1 |t — t*] < 6o, |A — A*| < Jp} and 4y is given by
61 = (2M;By) ™" 0o, (61)

where

Bx= sup [oxF(t,A)]2,
(t,)\)EV(s

M, = atF(t*J\*)_lHQ.

The following two lemmas, proved in Sections 4.1.1 and 4.1.2 respectively, give us values of dg and ¢; that
define balls around ¢* and A* respectively which are included in the balls required by the quantitative implicit
function theorem with radii defined in (60) and (61).

Lemma 10. (Radius of ball around t*) The condition (60) is satisfied if
2| M +*
5o = — 7111 )HL*” . (62)
Vi (44 2 222

Lemma 11. (Radius of ball around \*) For dy from Lemma 10 and 61 from condition (61), the following

choice of dy:
/(4%
RGN
24/2m

satisfies §y < 01.
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Given the definition of the function F' in (58), we have that
OF Z N (= s55), (63)
j=1

ONF(t,\) =[d(t—s1), ... ,¢(t—sm)]". (64)
By applying Taylor expansion to ¢(A) around A\* in the region defined by dp and ¢y, we have that
tA) = t(A*) + (A = A%, 0xt(Ns))
for some As on the line segment determined by A* and A, so
1)~ ¢0)] < A= ¥, - [ortOw),
do
< m /"
D=1 250" (t(As) — 55)
where in the last inequality we used that |\ — A*| < dp and (59). We now need to bound the terms in (65)
for the Gaussian kernel ¢(t) = et/ First, we rewrite the last inequality as

l»

Jleos —s0, o o0 -sl] . ©9)

) = ()] 3 0hgy + X = A () — )
j=1
<4 H t(As) —s1), . 5@ (t(Ns) —Sm)]’2a (66)
we apply the reverse triangle inequality in the sum on the left hand side:
) =00 [ | 330 = 4670000 = )]+ |3 K00 — )
i= =
<60+ [[0 ) = 5T (67)

and then we apply the Cauchy-Schwartz inequality to the first sum on the left hand side above to obtain:

6O = HO9)] | = s = A, | [ (1) = s, |+ |25 A () = 55)

<o+ |[¢/t0) = )], - (68)
To simplify the notation, we write §; = [t(\) — t(A*)| and
A= [0 t00) = 5], (69)
B =| > X" (t(Ns) — )| (70)
j=1
= |[¢o't0) = )], | (71)
and by using? |As — A*|2 < o, we have that:
d:(—0pA + B) < 6C, (72)
which can be further re-written as: C4oA
5 < +B 25, (73)

The aim now is to obtain a bound on §; as a function of §; and the parameters of the problem. Therefore,
we need to lower bound B and upper bound C + §; A

2Since |A — A*| < §p and \s is on the line segment between A\* and ), then \s is in the ball centred at A* with radius Jo.
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Bounding A,B,C

We start with B, for which we want to calculate a lower bound. First, we Taylor expand each term of the
sum around t(A*) — s; as follows:

m

B = | > A" (t(N*) — 55 + t(As) — t(XF))

Jj=1

m m

= DX — 5) + (1) — 1) D AO"(E)) ()

> Z NP (E(N) = 55)| = [t(hs) — (X)) Z AT (&) (75)

where & € [t(A\*) — s; — [t(As) —t(A*)],  t(A*) —s; + [t(Xs) — t(A*)[] for j = 1,...,m, and on the last line
we used the reverse triangle inequality. We calculate an upper bound of the last sum in the previous equation
as follows:

Z )\*d)lll 5] H)‘*H2 . H [(bm(fj)]j;l ,

J=1

by Cauchy-Schwartz, (76)

_ el ovim
~

o3

; (77)

where in the last line we used the maximum value of ¢"(t) and c is a constant.3
Finally, by using the §p from Lemma 10 as a bound on [¢(As) — ¢(A*)| and (77), we obtain:

c|A*l2

B> " t* oo e
LAURTE D e R

(78)
Note that the last fraction above is subunitary, so the bound is indeed positive.

Lastly, we upper bound C + §; A. We bound both A and C using the upper bounds on ¢’ and ¢” given
in footnote 3 and obtain:

A< m

v (79)
V2
c< ¥ (80)
a\/e
and for d; we use the bound (62). Putting (62), (78), (79) and (80) together, we obtain:
[E(A) = t(A*)] < Co - | X = X¥|,, (81)
where
L 2v2m (20 + | A*]2) N 20 (82)
Tl )love (4o + X)) Ao+ FIMR
which can also be written in the form in (19) in Theorem 2.
4.1.1 Proof of Lemma 10 (Radius ¢y of the ball around ¢*)
Let us now find the radius dp which satisfies (60). Using (63), the expression inside the sup in (60) is
= ST A" (t— s5) ’Z;n P AT —s5) — A" (t = s5) )
X At = s) \zjzl NCAGETOIE

4V9-3v6 3 9036,

3 maxien @/ (t) = 2, maxicn @' (1) = &, maxier ¢ (1) = S, where ¢ = 2=
e
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By denoting each term in the sum in the numerator in the last equation above by T} and then adding and
subtracting AT and ¥, we obtain:

Ty = N;"(t* —s5) = (Nj = AT)@"(t — 55) = AJ@"(t" — 55 +t —17)
= —(Aj = A7) (t = 55) = A (t —t%)8" (&), (84)

for some &; € [t* — s; — |t — t*[,t* — s; + |t — t*]]. Then:

ST O = XDt = )| + [ AT = 9)6(&))]
S X (e — )

A=l et = s, |+ 1=t

E <

sz s

< (85)
> 1A*¢”< - 5)|
We now have that
sup E< sup FE (86)
(t,\)EVs, [t—t*|<d0,
[A=A¥| <50
le il e
< ) (87)

[z M;“ "( —sj>

We now further upper bound the fraction on the last line of the previous equation. The terms in the
numerator are bounded by taking the maxima of the functions ¢” and ¢” from footnote 3 respectively:

m

2 ¢ (t — Sj)2

| 2 (35)

.-

< \/m.max|¢~(t_ 52 <
J

=1 o
and
D) A" (6)| < Iz [6” (€))L, by Cauchy-Schwarts (89)
j=1
[A%]l2 (90)
< Iz max |67 (&) lvm (91)
o Il2vm
where ¢ = 47@[ ~ 3.9036. By writing
e 2
m
at) = 3, Aot — ;) (93)
j=1
and using the above bounds, we have that
2f IX*l2v/m
+
sup E < - - (94)

(t.N)EVs, lq" (%)
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Finally, in order to satisfy condition (60), we need to impose the condition that the right hand side of (94)

is less than or equal to 1. We select §y to be the largest value that satisfies this, so:

2
4" (t%)] _ o?|q"(t*)]

|t—t*|<50=4;/25+2c.W_WGJF?C.M?). (95)
4.1.2 Proof of Lemma 11 (Radius J, of the ball around \*)
The radius 6, of the perturbation of A\* is given by:
Sy = (2M;By) 6o, (96)
where
By = sup ||OAF(t, )]s, (97)
(,\)eVs
M, = HatF(t*,)\*)‘lHQ. (98)

For B, we have:

m - \/%

loxE(t, )2 = Z Pt —s5) < e’ (99)

where we have used the global maximum of the first derivative of the Gaussian from footnote 3, so by taking
sup on both sides in the last equation, we obtain:

- V2m
AN e
Note that here we do not use any assumptions on the locations of the sources ¢; and the samples s;. If we

did, we would be able to obtain a tighter bound than by only using the absolute maximum of the function.
For M, note that we have

B

(100)

My = |¢" ()7, (101)
where ¢(t) is defined in (93), so

B //t*>|
oM, By) 15y > TV 5 102
(M:BA)™ 00 2 = o do (102)

We then take d) to be equal to the lower bound in the equation above:

5. = IVeld" ()]

L. b0, 103
24/2m 0 (103)

and, after substituting our choice of §y from (62), we obtain the radius (17) in Theorem 2.

4.1.3 Proof of Proposition 3
Starting from the definition of Cyx in (19), we have that:

O = 1 2v2m(2 + cR)
YT 4R raRING

- 1 n 24/2m
4+ c|X*]2/o  |g"(t*)|Ve
1 2
SRR
4 Ve g (t*)|

where in the first inequality we used the definition of R = ”A:‘b and

we used c||[A*|2/0 > 0, where ¢ ~ 3.9036 is a universal constant.

(104)

24+cR
4+cR

< 1 and in the second inequality
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4.2 Proof of Theorem 4 (Dependence of |a —a*|, on [t — t*5)
We apply equation (4.2) in [30], with e = 0 (the noise in the observations), and obtain

a—a*— o Ea* — FTEa*, (105)

where ®f = (#7®)~1®7T is the pseudo-inverse of ® and F' = O(E) is the perturbation of the ®' due to the
perturbation E of ®, namely ~
of =@ + FT.

In order to obtain an explicit expression for F, we write ®:
B = (873) 13T
— @+ B @+ E)]_l (@+E)" by (23)
= (7o + A)"H@T + ET), (106)

where
A=FET®d + ®TE + ETE e R¥*F, (107)

In order to compute the first factor in (106), consider the QR decomposition of ®:
® = QR, where QeR™F* and ReRMF (108)
with QTQ = I;, R upper triangular. We have that:

of = R71QT, (109)
®T® = RTR. (110)

We then write the first factor in (106) as
(@T®+ AP = (RTR+A)™!

- [RT (r+R”RTAR™) R]

—1

—R|I+ i(q)l (R*TAR*I)l RT
=1

= (R"R)™' + So
= (®79)"" + S, (111)
where
0 l
Se =R | Y (~1) (R*TAR*) RT e RF¥*, (112)
=1

and in the second inequality in (111) we applied the Neumann series expansion to the matrix I — R-TAR™!,
which converges if
|- RTAR™ Yy < 1. (113)

We will return to condition (113) at the end of this section. We now substitute (111) in (106), giving
&' = [(@7®) ! + 5| (@7 + ET)
=& + (@T®)'ET 4+ 5507 + S ET,

so we have that
FT = (87®)'ET + Sp®” + SoE7, (114)
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which is indeed O(FE), since Sg = O(A) and A = O(F). We next upper bound |Sgl|2. Firstly, note that,
because ®f = (QRfl)T, we have that:*

|72 = [QR™" 2 = [R™]. (116)
Then, by using (116), norm submultiplicativity and triangle inequality, from (112) we have
0
ISall2 < @15 D 12151 Al (117)
=1

Now let D be an upper bound on |A|2, obtained by applying the triangle inequality in (107), so that
|All2 < D = 2|E2] @]z + | B3 (118)
Then, from (117) we have

o0
Sz < 213 ) 1273 D!
=1

1 D3
= | "3 ~1) = : (119)
*\1-D|of[3 1—D[®'[3

where the series converges if D|®7|3 < 1, in which case the denominator in the last fraction above is positive.
We return to this condition at the end of the section. We also know that®

-
Umin(q)) '

By applying triangle inequality in (114) and then using (119) and the fact that [|(®7®) 7| = 1/02, (®) =
|®T|% (from (120)), we obtain

|2 = (120)

D[ 23

|Fl2 < Bl212Y3 + +—Fraim
* 7 1-DJef[3

(122 + 1 E]2), (121)
where D is given in (118). It remains to establish an upper bound on | E| , and consequently on | E||2. The
following lemma, proved in Section 4.2.1 gives us such a bound.

Lemma 12. (Upper bound on |E|r) Let E = ® —® for ® and ® as defined in (22) and (23) respectively
fortj,t; €[0,1] for j=1,...,k. Then:

4 _
Aoz Max; [t; _tjl\/ﬁ

IE]r < > - ¥ (122)

By using triangle inequality and norm submultiplicativity in (105), and then substituting (121) and (122),
we obtain

la* — &2 < |El2|@T2a*(2 + [ E3] 273 ]a*

|E|2D] 2[5
Aoz max; |5t fma* s £ — €41 + O([F — 6¥[2) (123)
x UZOmin(q)) 2 2/

4To see the second equality in (116), for a matrix Q € R™** with QT Q = I and any matrix A € R*** we have that
QA2 = sup [QAv|z = sup [Av|z = |A]2,

lvll2=1 lvlla=1
since
[QAv|2 = vTATQTQAv = vT AT Av = || Av||3. (115)

5Using the SVD ® = UXVT, we have &7 = (#7®)~1aT = (v2VT)-1y2UT = VE~1UT, so the conclusion follows.
g
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which is the bound given in Theorem 4. Note that because |E|y = O([[t — t*||2) (see (122)), the first term
is the only term that is O(|[t — t*|2) in the first inequality above, so the other terms are included in the
O(|[t — t*|3) term at the end.®

Lastly, we return to condition (113), which must be satisfied in order for the bound above to hold. By
using norm submultiplicativity and the bound on ||A|3 from (118), we obtain

T
|97 AeT|, < [@TIZ1E]3 + 2|2 @T 3] £]- (124)

and by requiring that the right hand side above is less than one, we obtain a quadratic constraint on |E|s,
satisfied if

o2, (®)

E|s < ) 14+ 2=

H ”2 Umax( ) Ulgnax(q))

By using the bound on | E|y from (122) with max; |f; — ¢;| < 1, the above holds if

020 max(®P) ol (D)
0 < —pmee— [ 414+ i 2
e m \\ T 2@

which is the condition (25) in the statement of the theorem. Note that by imposing this, we also ensure
that the condition for the series in (119) to converge holds, since D|®7|3 is equal to the right hand side of
(124).

4.2.1 Proof of Lemma 12 (Bound of |E|F)

Since E = ® — ®, for fj being a perturbation of ¢;, we have that

_(Si—fj)2 _(Si—tj)z
e 2 —e o2

_ (Si—tj)z
=e o2

|Eij| = ez [(oimta)*=(i=8)7] _ 1‘ .

Then the exponent can be written as

1

o2

[(si = £9)% = (s = %] = ’0_12 |254(5 = ) + (&5 + L)t fj)]‘ <Mt

g

where we used that s;,%;,t; € [0,1], so
e 2xlti—t5l < ez [(si=t))* = (si=)?] < e%‘fﬂ"m?
which implies that
|E;;| < (@g%[@f—tjﬁ—(si—fj)?] N 1‘

< max {1 - e_%zﬁf—tjl’e%zlfj—tjl _ 1}

— eazlti—til _q

= %Ifj —tj] - €,

(si—t)?

for some & € [—%ﬁj —t;], |t — tj|] and where in the first inequality we have used that e~ -2 < 1.
Then

4 . A \F_t
|Bisl < J5lti = 4l ezt

6Tn these terms, note that max; |¢; — ¢;| < 1 and therefore the notation O(||t — t*|2) is correct.
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and we conclude that

m k 4602“ ‘ -
1E]2 < |E[r < Z Z |fj =4
%m ax; |tj_ta|\/7

o2

de
<

[& — %2, (125)
provided that #;,¢; € [0,1] for all j = 1,..., k.

4.3 Proof of Theorem 8 (Dependence of |\ — A\*|, on the noise w)

We apply the quantitative implicit function theorem to the function F' defined in (39). First, note that in
the bound (41), which we want to prove, we only need to consider the k non-fixed entries of A and \*, as
the error in the other entries zero. Therefore, in this proof we will only work with the vectors of non-fixed
entries A\, \* € R¥, but we will abuse the notation for simplicity and write A and A\* respectively. Similarly,
we will write w to denote the vector wg € R?* corresponding to the 2k entries of the noise vector w € R™

and sq,..., sg, to denote sq,,...,Sq,,. The partial derivatives of F from Definition 7 are:
- k
6)\1Fj = —Zl/id),(ti(/\)—sj')a)\lti(/\) l= 1,...,]{:, j = 1,...,2]{}, (126)
O Fj=—oti(N) —s;), l=1,...0k j=1,...,2k, (127)
_ 1, if [=j
Ow F; =< ’ l,j=1,...,2k. 128
v {O, otherwise, J (128)

Let v = [\, v]T and v* = [A*,a]”, so that we can write F([\,v]T,w) as F(y,w) and F(y*,0) = 0. In
order to apply the implicit function theorem, the following conditions must be satisfied:

1. 0,F(v*,0) is invertible,
2. We choose the radius d, of the ball Vs around v where the result of the quantitative implicit function

theorem holds: 1

sup | 1= [2,F(*,0)] 7 0, F(r,w)| <, (129)
(v, w)eVs,, 2 2
3. The radius §,, of the ball around w* = 0 that contains w is:
Sw = (2MyBs,) ™6, (130)
where
Bs, = sup  [0uF(y,w)]s, (131)
(7, w)eVs,,
My, = 05 F(v*,0)7"2. (132)

The first condition is also one of the conditions in the theorem, and it has been discussed in Section 3.1. We
now need to establish the two radii for the balls of the perturbations.

Perturbation radii

Before proceeding to calculating the radii of the balls where the implicit function theorem holds, we state
the following lemma, which allows us to write the Jacobian of F' with respect to the first variable as a sum
of the Jacobian evaluated at (v*,w*) = ([A\*,a]T,0) and a perturbation matrix, whose norm is bounded
explicitly. The proof of Lemma 13 is given in Section 4.3.2.
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Lemma 13. (Bound on the perturbation of the Jacobian of F) Let J(\,v,w) be the Jacobian of
F(v,w) with respect to v = [\, v]* and &, an upper bound on the perturbation of v* = [A\*,a]”, namely:

A —\*
[ vV—a ] < 0y
2
Then:
J\ v,w) = J(A*,a,0) + E, (133)
with
HE”F < P(k,O’,H,T, Ct*) ’ 5’}” (134)
where:

1 _
P(k,o,IL7,Cyx) = 2k l2 (2\/%03*H + 4kCls Ao7II + QCt*)
g

1 [ V2kCix ) 2v/2A,T1 - V2kA,TT
+ = < \/g + 4\/ECt*H + T + 8kCyx AoIl + T s (135)

for |\ — A*| < 8\, where 5y and Cyx are given in (17) and (19) respectively in Theorem 2 and Ay is given
in (176) in the proof.

We can now use Lemma 13 to write

O F(v,w) = 0,F(v*,0) + E, (136)
then
I—[0,F(v*,0)] " 0, F(v,w) = I — [0,F(v*,0)] " [3,F(v*,0) + E]
- —[6,F(v*,0)] " E, (137)

1= (2P0, 0] oy Fw)| < 2, P0%,0] 7| - 18]
. 1Bl
Gmin(a’vF('}’*vO))
P(k,o,11,7,Cyx)
< = : 2%
O'min(a’yF(’Y*vo))

(138)

where P - 4, is the upper bound on ||E| r given in (135).
Therefore, from the condition that the right-hand side of the last inequality is less than or equal to %,
we choose the radius d, to be:

Umin(avﬁ('y*v 0))

0y = 2P(k, 0,11, 7, Cp ) (139)
Using (128), we have that
Bs, = 1. (140)
Then )
Mo = @ F (7, 0)) (141)
so, using (139), we obtain B
B = Omin (03 F/(77,0))" (142)

~ 4P(k,0, 11, 7,Cpx)’
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Applying the quantitative implicit function theorem

Having calculated the radii where the quantitative implicit function theorem holds, we apply it to obtain:

dwg(w) = — [01F(g(w),w)] ", (143)

where 0; is the partial derivative with respect with the first argument and g(w) gives the dependence of
[\, 7]T on w. Specifically, we write:

Ai(w) = g;(w) for i=1,...,k, (144)
vi(w) = ggyi(w) for i=1,... k. (145)
Let J(\,v,w) = 01 F([\,v]T,w), where A = A(w) and v = v(w) by (144) and (145). Lemma 13 gives

J\v,w) = J(\*,a,0) + E, (146)

so E is the perturbation of J(A*, a,0) due to perturbed A, v,w and a bound on |E|F is given in the lemma.

We will now use the following result, proved in Section 4.3.1, which enables us to make use of the upper
bound on the norm of the perturbation given by Lemma 13 in order to lower bound the smallest singular
value of J.

Lemma 14. Let J e R™*", [f J = A+ FE, then
Omin(J) = Omin(A) — [E| .
By applying Lemma 14, we have that:

1 1 1

< =
oI 0)  Gain TS0 0) = VBT~ e (00w,,0)) (1~ oo )

1 2|E|r
< : ,
Umin(J(A*a a, 0)) (1 - UInin(J()‘*v a, 0)) (147)

for
Bl _1

Omin(J(M*,a,0))
where we used the fact that (1 —z)~* <1+ 2z for z € [0, 5]. Note that the condition above is the same as
the condition that the right hand side of (138) is less than or equal to 5, which is satisfied for our choice of
0y and 0.

From (143) and (147), we have that:

(148)

1
Hawg(w)|‘2 = Umin(J()\*7a7O) + E)
1 2
< .
O'min(J(/\*, a70)) (1 * Umin(J(A*yaa 0)) |E”F>
= ; (149)

Tmin(J(A*,4,0))’
where | E|F is upper bounded in (135) and w, A and v satisfy
[wle < 0w, [A=A*2< 6y, |v—alz <05
The first-order Taylor expansion of g(w) around w = 0 is:
g(w) = g(0) + dug(ws)"w, (150)

for some ws on the segment between the zero vector and w. Noting that g(w) is our notation for the vector:

g(w) = [A(w)] ; (151)



with A(0) = A* and v(0) = a, from (150) we have that:

=]

et

v(w) —a
< [Gwg(ws)]2 - w2, (152)
for w, A and v such that
[wle <60, IA=Ml2<d, v—als<d,

where we use the bound from (149).

4.3.1 Proof of Lemma 14
We have that

o(J) = min max u’ (A + E)v

[vl2=1 JJull2=1

> min max u! Av — max max ul Ev
[vilz=1uf2=1 [vl2=1 [ul2=1

> omin(4) = | E|F-
4.3.2 Proof of Lemma 13 (Bound on the perturbation of the Jacobian of F)

Let J(O\,v,w) = 01 F([\, v]T,w), where A = A\(w) and v = v(w) by (144) and (145), and we want to write J
in the form

JOv,w) = J(A\*,a,0) + E (153)

i.e. E is the perturbation of J(A*,a,0) due to perturbed A, v, w. In order to apply Lemma 14, we need an
upper bound on |E|F, so we need to upper bound each entry of E. Let

J = [J1Js], (154)
where J; corresponds to the terms (126) and J5 to the terms (127) and
E = [E\Es] (155)

the corresponding perturbation terms.

Entries in J;
Fori=1,...,kand j=1,...,2k:

==

Jlj,i == (Up —ap + ap)¢/(tp()‘> - t: + t: - Sj)a)\itP(A)
k
== 2 Ontp(A) [ap¢/(t; —sj +tp(A) —tp) + (p — ap)d'(tg — 55+ 1p(N) — t;)]
k
= - Z aAitp()‘) [ap(b/(t: - Sj) + ap(tp()‘) - tz)qb”(gj:p) + (Vp - ap)qbl(tz - Sj)
p=1
+ (v = ap)(tp(N) = 15)¢" (&,)]
k
— = D ontoN) (@' (6 = 55) + A, ) (156)
p=1
where
Ay, = ap(tp(A) — t;)ﬁb”(gjm) + (vp — ap)(b/(t; —85) + (p — ap)(tp(A) — t;)‘ﬁ”(fj,p)v (157)
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for some &;, € [t} —s; — [t, — 5], 15 — s; +|t, — t5|]. The factor involving the partial derivative in (156) has
the same form as (59) so in order to bound it we write the Taylor expansion of (59) around A\*:

Ortp(A) = Oatp(A*) + 3atp(Xs) (A= A¥) (158)
for some A\s on the segment between A and A*. By using (59) with (63) and (64), the entry ¢,/ in the Hessian
matrix H = 03,t,(\s) is

F; (A
(#") = 1) - (159)
R D RPVEL OV EH]

for 4,1 =1,...,k, where
Fia(\) = = ¢"(t,(0) = s0)0xtp(A) Y, 20" (5p(N) — 55)
j=1
+¢'(tp(N) — i) Z Ai@" (tp(A) = 55)0ntp(A) + 8" (tp(A) — 1) |- (160)

Note that in the denominator (159) we use all m entries of A and samples due to how we defined the function
from (59), and the same is true for the sums in (160). From (158) and (160), we then write:

aAitiﬂ()‘> = a)\itp()‘*) + AQi,p’ (161)
where i
A= AF)Fi (A
AQi,p _ Z ( l l) ,l( 5) 5. (162)
S 20 (1 () = 57)]
Note that [ goes up to k because we only work with k entries in A\. Therefore, we have that:
k
Te == 2 (@t + Aa,) (ap0 (8 = 55) + A, ) (163)
p=1
where
A, = O(lty = 5] + lvp — ), (164)
= O(|A = A*[2), (165)

fori=1,...,k,j=1,...,2kand p = 1,..., k. The next step now is to upper bound [Ay; | and |Ay, |.

Bounding Ay,
By the triangle inequality, we have that:

|A1j,p| < |ap‘|tp()‘) - t;||¢”(§j,p)| + |Vp - apuﬁb/(t; - S])| + [vp — athp()‘) - t;||¢”(fj7p)|

2

2 _
< |ap‘|tp()‘) - t:|§ + |Vp + |Vp - ap”tp()‘) - t;‘ﬁ = Alpv (166)

V2
- ap' \/EO'
forj=1,...,2kand p=1,...,k, where we have used the maxima of the Gaussian and its derivatives given
in footnote 3.
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Bounding A, ,
By applying the Cauchy-Schwartz inequality, we have that:

F;1(\
. 1(As)

‘AQi,p| <
S A (1 (M) — 55)

A=A (167)

2’ :
‘ Fik(As)
We now bound |F;,| for i, =1,... k:

[Fii(Na)] < 19" (tp(As) — 50l [oxtp(As)] Z A" (tp(Ns) = 55)
j=1

+ 16/ (tp(As) — si)| [ [, tp (X)) Z%(lﬁ’” (As) = s5)| + 10" (tp(As) — s1)]

< 22 sl [0t 0) — )17
2 (o 0 2)
\QCt* [Asl2 - 2\/7 f <Ct*|)\52 C\F 02>7 (168)

where we used the Cauchy-Schwartz inequality, the bounds in footnote 3 and Cyx from (19). Therefore, the
above inequality holds for A\s € B(A*,d,) with & from (17).
The final bound on |F; ;] is
24/2
Byl < 2CmmT | 2V2
o Jeo

where ¢o =4 + % ~ 7.3484, for i,1 = 1,...,k and we used |As]l2 < 74/m.
The next step is to obtain a lower bound on the denominator in (167). By adding and subtracting )\;’-‘ to
A; and applying the reverse triangle inequality, we obtain:

(169)

DN () = 55) = | D0 AE (Ep(N) = 55)| = | D3 (N = A" (1, (V) — 55) (170)
j=1 Jj=1 Jj=1
A* 2 A—A*
> |q”(t*)| [1 . = i|2c)2\*|2] _ \/’rTLH(T2 ”27 (171)

where the first term on the right hand side on (170) has the same form as B in (70), and therefore on the
next line we use the bound in (78). For the second term, we apply the Cauchy-Schwartz inequality and the
bound in footnote 3, where the constant ¢ ~ 3.9036 is obtained. The last inequality above holds under the
condition that the right hand side is positive. We set the stronger condition that the right hand side of (171)
is greater than or equal to one:

DTNt (N) = 55)| = 1, (172)
j=1
which is satisfied if:
24/m| A — A*¥|2 4o + 2¢|A*|2
" = |1 . . 173
(1) ( ¢ i e (173
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Then, using the box constraint |A|, < 7 and the fact that |A — A*||a < 274/m from the triangle inequality,
and the fact that 22t2¢72 < 9 the condition (173) is satisfied if:

do—+c|[A*] 2
. dmr
lg" (t%)] = 2 . (174)
o2

By combining (167), (169) and (172), we obtain the final bound on Ay,

|Ag, | < Az A=A, (175)
fori=1,...,kand p=1,...,k, where
~ VE 2v2
Ay = ? CQCt*mT + WU R (]_76)

and ¢ ~ 3.9036, ¢y = 4 + % ~ 7.3484.

Therefore, from (163) and by using the definitions of A and A, from (166) and (176) respectively, we
have that:

k
= Z &Aitp(A*)Alj’p + aqu'(t: — Sj)AQi,p + Alj,pAZi,p

k k
<O Y 8, + X adslal- [0 ],

k
A= A28 DT A,
p=1

2 V2
< (Co+ 1A = M2Bo) (S5 lalalt(h) — ]2 +

\[ HV - aHI
2 . Vok oo
+ oIy = ablt) = #°12) + 2 lalaAs
- (2VEC, V2
< (C+ 1A= X 1Bo) (2T allA — Xl + |

Veo

V2k - _
lall2|A = A*[2Ay =: By (177)

Veo

2VkC
+ Sy = afaA— A ) +

fori=1,...,kand j =1,...,2k.

Entries in J,
By adding and subtracting t;‘ then taking a Taylor expansion like before, we obtain:
Ja,0 = —0(t] — s +ti(N) — )
= —o(t] —s;) — (t:(N) — )¢ (&)
= 7@5(2&? — Sj) - E2i,j’ (178)
for some &; € [t} — 55 — [ti(N) — ], — 55 + |ts(A) — tf|] and Ey, , is the perturbation term. Then:

V2

Es>. .
|Ea; P~

< [ti(A) =& (179)

fori=1,...,kand j=1,...,2k.
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Putting everything together
We have that

k 2k

|EF—\ZZE2 DIDIN

1=17=1 1=17=1

_ 4k &
ok B2+ 2K DUl = tF]?

<
\ ! 026 =1
20k
<kE\W2+ 7“15( ) —t¥]2
_ 2 k
< kW2 + Cj A= 2*]s, (180)

where we have used the bounds on the entries of £y and Ey from (177) and (179) and Theorem 2, so this
result holds for A\ € B(A*,dy) for J, defined in the theorem. Finally, by substituting the expression of F;
from (177), we obtain:

- 20\ k
11 < Vak| (Coo 12~ XTade ) (ZX5 - A%,
\F zct*\/E V2k -
- — A=\ A= 2, A
# 32ty —al+ 2R~ alala = X1 ) + Y2l - A*Tads
20+ k
+ IA = A% ]la. (181)
/e
Let é, be a bound on the perturbation:
A — \*
2
and therefore:
A= A*]2 <0y and lv —al2 < 6. (183)
We also have that:
lv —al2 < v —al < |v]1 + [la]: < 211 (184)

where we used that v; + ... + v < II and the fact that x = Zl;:1
lzllrv = llal <II.
Similarly, we have that:

a,dy, is the solution to (9), so it satisfies

A=Az < (A2 + [A* 2 < VE[Mo + VE[X* o
< 2Vkr, (185)

since both A and A* satisfy the constraint in (27). In order to write the bound (181) as P - ., we expand
the parentheses and use the following bounds:

[A = X2y —afy <2114, (186)
A= N[5l — all> < 4 WTH + 0y (187)
[A = X2y —af2 < 2116, (188)
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to obtain:

1By < \/ﬁk(Q\/ECf*H N V2kC s N AVEC2 T
o Veo o
N 4kCys Aol N 227,11 N 8kCyx Agrll N V2EALTT
o2 Jeo o Veo
\F Ct*> ;.
U\f

which we rearrange based on o to obtain |E|r < P(k,0,II,7,Cyx) - §,, where:

(189)

Pk, 0,11, 7,Cx) = /2 kl (2[ 2 H+4kCt*A27H)

1 [ V2kCysx 2\/55211 . V2kALTI 2
+ ; < \[ 4\/70 T + 8kCt*A2TH + T + gct* 3

which is the final bound in (135).

5 Numerical experiments

In this section, we present numerical experiments which verify the bounds given by our main results, The-
orem 2, Theorem 4 and Theorem 8. To do this, we take an example of a source and sample configuration
and a Gaussian kernel for a given o and solve the exact penalty formulation (28) of the dual problem (27)
using the level method [16], given in Appendix B. We introduce inaccuracies in A by stopping the algorithm
early and show how these perturbations affect the source locations and weights. Next, we add noise to the
measurements to show how \ is affected. We are, therefore, able to compare the ratios of the perturbations
obtained numerically with the constants in the theorems to show the validity of our results in practice. The
specific details are discussed in the next subsections.

Setup

We place three sources at locations ¢t € T = {0.25,0.63,0.889} with weights a} € {0.8,0.5,0.9} and m = 21

equispaced samples in [0, 1], with a Gaussian kernel ¢(t) = e~*"/°" with o = 0.07. We show this configuration

in Figure 2.

0.9 i
05| ()
Yy

0.7 1

061

051

0.4r

031

0.2r

011

0 0.2 0.4

S

Figure 2: The source-sample configuration used for numerical experiments in the current section.
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Effect of A\* perturbations on t*

We then solve the dual problem (27) in the exact penalty formulation (28) with box constraint parameter
7 = 10° and penalty parameter II = 100 and run it for P = 500 iterations. This gives an accuracy in the
source locations of |t; — t¥| < 1078 for tf € T
While it is possible to optimise the parameters 7, IT and P in order to obtain better accuracy in the
source locations ¢; and weights a;, it is not the aim of this section. Note that Theorem 2 gives the result
(18) in the form
[t — £5] < Coe[A = A¥],

where ¢ € T is an arbitrary true source location, A* is the solution to the dual problem (27)7 and ¢ is
obtained by perturbing t* as a consequence of the perturbation A* in .

(p) _ %
One way of showing that a relationship of the type of (18) holds in practice is to plot the ratio M
for p = pg,...,P and ¢ = 1,...,k, where P is the number of iterations the level method is run for, p

is the index of each iteration and tgp ) and A®) are the values of ¢; and A obtained at iteration p, where
po = 1 is large enough so that |A(P) — \* H2 satisfies the condition in Theorem 2. The level method computes
the value A(®) after p iterations and {t; (p )} ", are obtained by calculating the global maxima of the dual
certificate ¢(P)(s) = Z )\(p)gb(s —s;). Since we know the true value of t¥, we can find t(p) by running a
local optimisation algorlthm with ¢} as the initial condition. For a large enough value of p, thls will give an
2 tz(-p)ftﬂforeachpzpo,...,Pandt;"eT. Then we

accurate value of ¢;"” and we can, therefore, calculate |

check that:
1" — ]
i T < O, 190
RS (190)
for p = pg,...,P and i = 1,..., k. One issue is that the true value of A* is not known. The best estimate

we have is A}, = AP) namely the value of A* given by the level method after P iterations. Therefore, the
result of Theorem 2 cannot be verified directly in practice, but must be adapted to take into account this
inaccuracy. For ¢ = 1,...,k, we have that:

[t — 5] < Cp JA®) — 2¥| 5

< Con (NP = Aeagllz + Noewr = X¥[2) (191)
and so
(p) £ F
t," =t A=A
l '; ‘ < Ct* 1+ ” b(;st H2 (192)
H)\ P bestH2 H)\ P best”2

For fixed P, which in the experiments in this section is P = 500, [Aj ., — A*|2 above is fixed and as p

approaches P, we have that [A®) —\* | — 0, and therefore the right hand side above goes to infinity. This

. T
is not a problem for our results, as it is not relevant how the ratio W behaves for [A®) — N o <
T pestl2
*

H)‘best A ”2

A
We can then find a range for p where w < 1 and where we can see that

best 2

17— #]

L R A Yo (193)
H)\(p) best”2 !

(p) 4%k
In Figure 3, we plot M for p = 20,...,270, where we see that the ratio is less than Cpx.
best
() _ %
Specifically, we show the ratio M and the constant Cyx from Theorem 2 for each i € {1, 2, 3}.
best 2

"Note that the analysis of the dual problem (10) from Section 2 applies to the dual problem (27) considered in Section 3 as
well, as the only difference difference between (10) and (27) is a box constraint on .
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Figure 3: The result of Theorem 2 for T' = {0.25,0.63,0.888}, 0 = 0.07 and m = 21. For each i € {1,2, 3},
we show the ratio of the error in ¢; and the error in A compared to the constant Cy+ given by Theorem 2.
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Effect of t* perturbations on a*

In the case of Theorem 4, it is more straightforward to check the ratio of the errors, since we know the true
values of the source locations and weights, which we denote by t* = [t¥,...,t§]7 and a* = [a},...,af]"
respectively. The error bound (26) given by the theorem is of the form:

4ft—t*| o0

la—a*a < Coxe™ =7 |t = t*|2 + O(Jt — t*]3),

where t is the perturbed vector t* and a is the perturbed vector a* as a consequence of perturbing ¢*. For
the values tl(p ),i € {1,2,3}, obtained after p iterations of the level method, we now solve the least squares
problem argming|®®a — y|, with the entries in the data matrix ®®) given by (I>§-f’i) = qb(tl(-p) — ;) to find

the corresponding perturbed weights al(-p ) for i e {1,2,3}. Then, according to Theorem 4, we have that:

[at” — a* |

o =, < Cla + O(|t") —1*|), (194)
where we write
ct. —C 4t®) ¥
a¥ — Lg*x€ o

. . (P) _g* . . . . . .
In Figure 4, we show the ratio M and C!, in the same setting as in Figure 3, for iterations p =
2, ... ,270.
106 T T T
— [|a® — a*[|2/[[t®) — t*[|2
—Cl.
104t \\\ a |
I
= 10°F 1
=
T o100F ]
:é \\\J—w—\’\J—’\"“\,—&
102 1
104 . . . . .
0 50 100 150 200 250 300

Iteration number p

Figure 4: Plot of the ratio between [a(P) —a*||5 and [t®) —#* | for p = 20, ...,270, and the bound C?, from
(194) in the setup described at the beginning of this section.

Effect of the noise w on \* and t*

As in the case of Theorem 2, where we rely on a best approximation A}, of A* for the numerical experiments,
a similar approach is required to check the validity of the results of Theorem 8 in practice. Theorem 8 gives
the bound (41) in the form:

AL = A% 2 < Cs - ]2,

where A\* is the true solution of the dual problem (27) and A% is the solution to the same problem with y
perturbed by the noise w.

As it is not possible to know exactly the values of A* and A}, let A, , = AP) be the value of X given by
the level method after P iterations when y is exact and Apes: be the value of A returned by the level method
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after P iterations when y is corrupted by the additive noise w. Then we can reformulate the bound (41) in
terms of A, , and Apess:

H)‘bESt - )‘l;kestH2 = H)‘bESt - )‘l))kest A=A+ )‘;ku - )‘:kuHZ
< Avest = Al + A = ALz + A" = Ajegll2
<

[Apest = Al llz + Cxr Jw]2 + [A* = Agsi 2, (195)
50 * * * *
H)\bCSt - Abe‘st||2 < O % + H)\bCSt - >\wH2 + H>\ - )\bestHQ (196)
[wll2 s Jwll2
ok
As before, we plot W, where A}, is the solution we obtain by solving the dual problem (27) in its

exact penalty formulation using the level method with P = 100 iterations and Apes; is the ‘noisy’ solution,
which is obtained by solving the problem with P = 100 iterations when y is corrupted by additive noise
w. We repeat this for different magnitudes of the noise w, which we increase gradually as follows. For each
component y; of y, we add a sample X, from the standard uniform distribution U(0, 1), multiplied by a
coefficient w,:

Ynoisy; = Yj + we - Xj. (197)

We repeat this for different values of the coefficient w,. from the set:

w, € {0.000002, 0.000004, . .., 0.00001,
0.00002, 0.00004, . ..,0.0001,
0.0002,0.0004, .. .,0.001,
0.002,0.003,...,0.01,
0.02,0.03,...,0.1}. (198)
Therefore, in Figure 5 we show the basic setup described at the beginning of this section. Panel (a) shows

[Apest — Ap s |2 against the norm of the noise |w]2, and in order to check that the algorithm actually converges
to a useful A}, ,, we also plot plot [tpest — t*|2 against |w]2 in panel (b), since we know the true value t*.

IApese=Af ., |12

Then, in panel (¢) we plot the ratio B T P and Cyx as given by Theorem 8, where we see that the
4%
ratio is smaller than the constant, as the theorem states. In the same plot, we also show the ratio W

and we see that it does not grow as the magnitude of the noise increases. In these experiments we only take
into account 2k entries of A and w, corresponding to the 2k samples that are the closest to the k sources, as
described in Section 3, for which Theorem 8 holds.

6 Conclusion

In this paper, we proved primal stability in the non-negative super-resolution problem, when addressed via
convex duality. The main ingredient in our analysis is a quantitative version of the implicit function theorem,
a folklore result in the theory of dynamical systems community.

In the noise-free setting, our results provide quantitative bounds in terms of the number of measurements
for the accuracy of the primal solution with respect to the convex dual problem solution in an ¢4, error bound
on the primal spike locations and an ¢ error bound on the spike weights. In the case when the measurements
are corrupted by additive noise, we have proved a similar result for how the dual variable is perturbed as a
function of the magnitude of the noise.

Acknowledgements

This work was done while BT was affiliated to the Mathematical Institute, University of Oxford, UK. This
publication is based on work supported by the EPSRC Centre For Doctoral Training in Industrially Focused
Mathematical Modelling (EP/L015803/1) in collaboration with the National Physical Laboratory and by the
Alan Turing Institute under the EPSRC grant EP/N510129/1 and the Turing Seed Funding grant SF019.

32



10° 10° T T - 10°
— thest - t*||2
10" 107 |l llwll2 10
102 L
= 1072 102 102
o2 - = -
I 10° 5 L 10% 10% 5
2 S
= 104 1074 10
— [ Avest = Apesell2| 110 100 F 107
— Jwll2
1 . . . , , , 6 6 . . . . . . 6
107, 5 10 15 20 25 30 350 107, 5 10 15 20 25 30 350
Run number Run number
(a) (b)
1010 .
_______________ 102
~ 108
= 10" =
= 2
’i; 108 10° ?
|
| %
;‘ . 101 =
10 — [ Abest = Apestll2/ 1wll2
- - C) . 102
N et Y LI
10°® 10 102

llwll2

()

Figure 5: Plots of |Apest —Af ;|2 (panel(a)), [toest —t[2 (panel (b)) and their ratio to the noise [|wl|2 (panel(c))
for |w|2 in a range as given in (197) and (198), in the setting described at the beginning of this section.

33



References

(1]

2]

3]

4]

[5]

[6]

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Eric Betzig, George H. Patterson, Rachid Sougrat, O. Wolf Lindwasser, Scott Olenych, Juan S. Boni-
facino, Michael W. Davidson, Jennifer Lippincott-Schwartz, and Harald F. Hess. Imaging intracellular
fluorescent proteins at nanometer resolution. Science, 313(5793):1642-1645, 2006.

Klaus G. Puschmann and Franz Kneer. On super-resolution in astronomical imaging. Astronomy &
Astrophysics, 436(1):373-378, 2005.

Ronen Tur, Yonina C. Eldar, and Zvi Friedman. Innovation rate sampling of pulse streams with
application to ultrasound imaging. IEEE Transactions on Signal Processing, 59(4):1827-1842, 2011.

Federico Pierucci, Zaid Harchaoui, and Jérome Malick. A smoothing approach for composite conditional
gradient with nonsmooth loss. Research report, RR-8662, INRIA Grenoble, 2014.

Stéphane Chrétien, Andrew Thompson, and Bogdan Toader. The dual approach to non-negative super-
resolution: impact on primal reconstruction accuracy. In 2019 13th International conference on Sampling
Theory and Applications (SampTA), pages 1-4, 2019.

Emmanuel J. Candés and Carlos Fernandez-Granda. Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906-956, 2014.

Geoflrey Schiebinger, Elina Robeva, and Benjamin Recht. Superresolution without separation. Infor-
mation and Inference: A Journal of the IMA, 7(1):1-30, 2018.

Vincent Duval and Gabriel Peyré. Exact support recovery for sparse spikes deconvolution. Foundations
of Computational Mathematics, 15:1315-1355, 2015.

Quentin Denoyelle, Vincent Duval, and Gabriel Peyré. Support recovery for sparse super-resolution of
positive measures. Journal of Fourier Analysis and Applications, 23(5):1153-1194, 2017.

Tamir Bendory, Shai Dekel, and Arie Feuer. Robust recovery of stream of pulses using convex optimiza-
tion. Journal of Mathematical Analysis and Applications, 442(2):511-536, 2016.

Jean-Marc Azais, Yohann De Castro, and Fabrice Gamboa. Spike detection from inaccurate samplings.
Applied and Computational Harmonic Analysis, 38(2):177-195, 2015.

Armin Eftekhari, Jared Tanner, Andrew Thompson, Bogdan Toader, and Hemant Tyagi. Non-negative
super-resolution is stable. In 2018 IEEE Data Science Workshop (DSW), pages 1-5, 2018.

Armin Eftekhari, Jared Tanner, Andrew Thompson, Bogdan Toader, and Hemant Tyagi. Sparse non-
negative super-resolution — simplified and stabilised. Applied and Computational Harmonic Analysis,
50:216-280, 2021.

Armin Eftekhari and Andrew Thompson. Sparse inverse problems over measures: Equivalence of the
conditional gradient and exchange methods. SIAM Journal on Optimization, 29(2):1329-1349, 2019.

Marco A. Lopez and Georg Still. Semi-infinite programming. Furopean Journal of Operational Research,
180(2):491-518, 2007.

Yurii Nesterov. Introductory Lectures on Convexr Optimization: A Basic Course. Springer Publishing
Company, 2014.

Zhenan Fan, Yifan Sun, and Michael P. Friedlander. Bundle methods for dual atomic pursuit. In 2019
53rd Asilomar Conference on Signals, Systems, and Computers, pages 264-270, 2019.

Nicholas Boyd, Geoffrey Schiebinger, and Benjamin Recht. The alternating descent conditional gradient
method for sparse inverse problems. SIAM Journal on Optimization, 27(2):616-639, 2017.

Emmanuel J. Candés and Carlos Fernandez-Granda. Super-resolution from noisy data. Journal of
Fourier Analysis and Applications, 19(6):1229-1254, 2013.

34



[20] Jean-Baptiste Hiriart-Urruty and Claude Lemarechal. Convexr Analysis and Minimization Algorithms,
Volume I: Algorithms. Springer-Verlag, Berlin, 2nd edition, 1996.

[21] Yohann De Castro and Fabrice Gamboa. Exact reconstruction using Beurling minimal extrapolation.
Journal of Mathematical Analysis and applications, 395(1):336-354, 2012.

[22] Vincent Duval and Gabriel Peyré. Sparse regularization on thin grids I: the Lasso. Inverse Problems,
33(5), 2017.

[23] Vincent Duval and Gabriel Peyré. Sparse spikes super-resolution on thin grids II: the continuous basis
pursuit. Inverse Problems, 33(9), 2017.

[24] Ankur Moitra. Super-resolution, extremal functions and the condition number of Vandermonde matrices.
In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC 2015), 2015.

[25] Yingbo Hua and Tapan K. Sarkar. Matrix pencil method for estimating parameters of exponentially
damped/undamped sinusoids in noise. IEEE Transactions on Acoustics, Speech and Signal Processing,
38(5):814-824, 1990.

[26] Stéphane Chrétien and Hemant Tyagi. Multi-kernel unmixing and super-resolution using the Modified
Matrix Pencil method. Journal of Fourier Analysis and Applications, 26(1), 2020.

[27] Cédric Josz, Jean Bernard Lasserre, and Bernard Mourrain. Sparse polynomial interpolation: sparse
recovery, super-resolution, or Prony? Advances in Computational Mathematics, 45(3):1401-1437, 2019.

[28] Carlangelo Liverani. Implicit function theorem (a quantitative version). Retrieved January 13, 2019,
from https://www.mat.uniroma2.it/~liverani/SysDyn15/appl.pdf.

[29] Samuel Karlin and William J. Studden. Tchebycheff systems: with applications in analysis and statistics.
Pure and applied mathematics. Interscience Publishers, 1966.

[30] G. W. Stewart. Perturbation theory and least squares with errors in the variables. In Contemporary
Mathematics 112: Statistical Analysis of Measurement Error Models and Applications, pages 171-181.
American Mathematical Society, 1990.

A Duality in the noisy case

In this section, we show the duality of the following problems:

y— j & (1)(dt)

min subject to  |z|ry <11,
=0 1
which is given in (9), and
max ()\Ty - H) subject to AT®(t) <1, Vte[0,1] and Ao < 1/5, (199)
>

AER™

which is a more general version of the dual problem (27). We start from the primal problem (9) by introducing
a new variable z = { ®(¢)z(dt):

min |z —y|, subject to =z = J(P(t)x(dt),
=0

2eR™
||y <TI, (200)
and then we write the Lagrangian:
L(z,2,8,)) = ||z —y|1 + AT (z — J@(t)x(dt)) + B (|z|rv —10) (201)
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so the Lagrangian dual problem is:

max min L(z,z,8,\) =
B=0 z=0 (@,2,8,2)
AeR™ zeR™

_ ; _ T T _
= max min [|z yli + ATz + J (ﬁ A <I>(t)) x(dt)] BII
AeR™ zeR™

= max min [|w|1 + 2w + f (6 - Ach(t)> x(dt)] + ATy — g1, (202)
B=0 x>0
AeR™ weR™
where in the last equality we make the substitution w = z — y.
The integral on the right hand side is equal to —oo if there exists o € [0, 1] such that AT ®(ty) > 3, as we
can set = o0 - §;,. Therefore, we impose the condition that AT ®(t) < 3 for all t € [0,1], in which case the
integral is equal to zero by taking x to be zero wherever the integrand is non-zero, and the dual becomes:

meax mﬂiQn (Hle + )\Tw) + My — B subject to AT®(t) < B, Vte[0,1]. (203)
=0 welR™
AGR'V"/

which can be rewritten as:

max — max {—)\Tw - ||w\|1} + My — BII subject to AT®(t) < B, Vte[0,1]. (204)
S0 weRm
AeR™

and note that for f(w) = ||w|i:

0, it [N <1,
7*() = max (AT (—w) = | —wl: } = {OO e (205)
is its conjugate [20]. Therefore, we impose the condition that |A]s, < 1 and the dual becomes:
max My —BII subject to AT®(t) < B, Vte[0,1] and [A|s < 1. (206)
ACR™
We then make the substitution X = A\/3 (for 8 > 0) to obtain:
max 3 ()\’Ty - n) subject to NTd(t) <1, Vte[0,1] and |N|w < 1/8, (207)
>
A/ER"YL

which is the problem (199).
Note that if we fix 8 and solve for \’, given that we are interested in the value of X’ rather than the value
of the objective function, the problem above becomes:

argmax ATy subject to NT®(t) <1, Vte[0,1] and [N|e <1/85, (208)
AeR™

which is the problem (27) that we consider in Section 3.

B The level bundle method

In this section, we describe the level bundle method [16] applied to (28) for which experiments were presented
in Section 1.1 and Section 5. The algorithm progressively builds up a polyhedral model of the objective
function from a ‘bundle’ of subgradients at each iteration. The algorithm proceeds by projecting iterates
onto a level set of the model, an approach which is known to improve robustness in comparison with the
standard cutting planes subgradient method (Kelley’s method). A statement of the algorithm is given in
Algorithm 1.

In the experiments shown in Section 1.1, II was chosen to be 2|a*|; and the level set parameter « was
taken to be 1/4.
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Algorithm 1 Level bundle method for solving Program (28).

Input: Kernel function ® : I — R™, measurements y € R™, sample locations {s;};e1,...m} € I, penalty
parameter II > 0, level set parameter « € (0,1) and number of iterations L.

Initialize: | = 1.

While [ < L, do
1. Compute a subgradient as

t e argsup(A )T d(s),

sel

! —y+O[AHTe@) —1], AHTe@E) =1
9 = I=IN\T & (4
—Y, N HPe) <1
2. Build the polyhedral model

UL(\) = max Tp(\ 1) + (¢")T (A= A"1).

r=1

yeeny

4. Project onto the level set as A' = P (AM'~1) where £, = {\: Up(A) < apl + (1 — )t}

5. 1l=1+1.

Output: AL e R™.
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