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Abstract
Almost half of the world’s population is carried by airlines each year, and understanding this mode of transport is impor-
tant from economic and scientific perspectives. In recent years, the increasing availability of data has led to complex 
network and agent interaction models which attempt to gain better understanding of the air transport network and 
develop forecasts. In this case study paper, we review existing research on two key approaches, namely: (1) a top-down 
multi-scale network science approach, and (2) a bottom-up entropy-maximization interaction network approach. Using 
simple socioeconomic indicators, we were able to construct a very accurate interaction model that can predict traffic 
volume, and the model can forward estimate the impact of population growth or fuel cost. Using network science 
approaches, we were able to identify community structures and relate them to economic outputs. We also saw how hubs 
evolved over time to become more influential. Looking into the future, using random graph theory, it seems that reduced 
flight cost will lead to increased hub influence. The disseminated knowledge in this case study paper will provide both 
academics and industry practitioners with steps forward to co-explore the interesting research landscape.

Keywords Air transport network · Complex network · Spatial interaction

1 Introduction

Air transport networks are complex networks that span 
across multiple distance scales (from a few km to 10,000 
km) and multiplex together over 5000 airline operators 
and has strong inter-dependencies with socioeconomic 
drivers. The air transport network carry 3.5 bn passengers 
per year and generate over 30 m jobs globally. The analysis 
of air transport networks to better understand its network 
properties goes back for over 10 years [1–4]. Both global 
and regional studies have explored their complex network 
structure across different network scales [5–7] with multi-
layer analysis [6, 8]. The analysis predominantly focus on 
robustness from attacks or failures [9, 10], efficiency [4], 
and structural evolution [7]. The air transportation network 
is also responsible for the propagation of knowledge and 

culture [11], infectious diseases [12–16], and understand-
ing the network properties allows scientists to better esti-
mate the intangible benefits and risks of global transporta-
tion. A detailed review of existing literature will be given in 
each relevant section of analysis in this paper.

1.1  Case study outline

This paper summarizes an intense collaboration project 
between Airbus (industrial practitioners) and academics 
that bring in new complexity methodologies to add new 
knowledge value. The goal is to review and explore the 
network science and interaction modelling methods that 
can be used to gain fundamental understanding into the 
complexity of air transport networks.

Two fundamental approaches are tackled in this review:
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• Bottom-up entropy-maximization interaction model, 
which considers consumer choice;

• Top-down network science analysis, which seeks to 
uncover common statistical patterns and infer latent 
knowledge.

The former gives a complex and detailed understanding 
of how spatial networks (i.e., flights) form from spatial pro-
cesses (i.e., airports) and what the weight of each edge 
(i.e., passenger volume) is with respect to cost (impedes 
flow) and benefit (attracts flow) functions that relate to 
consumer behaviour. The latter approach gives a statistical 
understanding into the fundamental network properties 
and how they evolve over time, enabling the application of 
generalized network scaling laws that can be used to pre-
dict the future structure of the network. Both the bottom-
up and the top-down approach is of fundamental interest 
to network science and industry.

1.2  Data availability and network construction

Several air transport network data sources are available 
from academic and commercial databases. One of the 
most widely used commercial databases is the purchased 
OAG data. This case study paper will use a single month’s 
sample in the year 2015, as well as open air transport data 
obtained from the US Bureau of Transportation Statistics 
to demonstrate results. The spatial resolution of the data 
includes 9000 global airports, each geo-tagged with coor-
dinates, and the temporal resolution of the data are every 
civilian flight (dis-including cargo flights). Compared to 
open data, the purchased data from OAG offers a more 
comprehensive list of flights as well as passenger volume 
and flight class distribution (e.g. between first, business, 
and economy).

In order to construct a network from the data, airports 
are represented by nodes and flights are represented 
by weighted links. The vast majority of work uses regu-
lar scheduled flights and the seat number of each flight 
is used as a weight for the link. True passenger numbers 
(load) are commercially sensitive and cannot be obtained 
on a global scale. Each node, if connected to another, is 
usually a bi-directed connection with equal weighting 
(i.e., most flights transverse back and forth). When multi-
ple flights exist between two airports, the total weight is 
the sum of the seats available. An example of the network 
is shown in Fig. 1.

1.3  Key industrial problems and interest

Industrial practitioners range from aircraft manufactur-
ers to airline operators. Of fundamental interest to both 
parties is the future of airline routes, both in terms of 

their spatial patterns (including multi-hop routes) and 
their demand intensity (including temporal fluctuations). 
Understanding these patterns allows aircraft manufac-
turers, such as Airbus, to design future aircraft, which 
may take up to 20 years and are required to operate 
for another 30 years. Generally speaking, the problems 
posed by industrial practitioners can be broken down 
into the following:

• How do we predict the passenger flow capacity of 
existing routes?

• What are the vulnerable points in the network that 
can help prioritize redundancy and security [16]?

• How can we categorize air transport networks for dif-
ferent airlines to define their business model?

• How can socioeconomic data help to understand the 
future of the network?

Several resolutions are of interest, such as: airline busi-
ness model (i.e., legacy, budget, regional, international), 
operational model (i.e., point-to-point, hub–spoke), geo-
graphic region (i.e., developed country, holiday destina-
tions), time-span (i.e., post-disaster, post-merger), and 
flight range (i.e., long-haul).

Fig. 1  Complex network of city nodes (airports) with directed and 
weighted air transport links. Node size reflects weighted degree 
and link line width indicates number of seats per month. a Global 
network comprises of 9033 nodes and 101042 links. b A number of 
domestic sub-graphs which comprises of 9032 nodes and 53496 
links
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1.4  Organisation

In Sect.  2, we give a literature review of bottom-up 
approaches such as spatial interaction models that have 
been applied to different transport scenarios. Focus will be 
on both pair-wise models such as the gravity law and the 
radiation model, as well as the Boltzmann-Lotka-Volterra 
(BLV) competitive interaction model [17]. A small-scale test 
case of its application to the air transport network will be 
given.

In Sect. 3, we give a review of top-down network sci-
ence analysis on the air transport network. At the macro-
scopic level, we focus on degree distribution and centrality 
correlation measures to detect certain airport properties, 
as well as small-world network structures and implications 
on network resilience to failures. At the mesoscopic level, 
we will focus on how community detection, core–periph-
ery profiling, and other methods can be used to identify 
network motifs such as hub–spoke structure to help indus-
try understand the network better and design future air-
crafts. Relationship with socioeconomic parameters will 
also be reviewed and analysed.

In Sect. 4, we review work on random graph models 
and how generic distance and hop-distance cost func-
tions can be used to change the network structure (i.e., 
from random geometric graphs to random graphs). We use 
these cost functions to hypothesize on how the network 
structure can evolve and what it means for the business 
model of aircraft designers.

In the last section, we summarize the bottom-up and 
top-down approaches and how future researchers can 
move forward in this area to better understand the sci-
ence of air transport networks.

2  Bottom-up approach: spatial interaction 
models

2.1  Pairwise models

Pairwise models are free from any global constraints (i.e., 
finite network commuter capacity bounded by total popu-
lation), and as such have low computational complexity.

2.1.1  Gravity law

One method to measure flow is the widely used gravity 
law to infer the volume of flow between any two given 
cities [18]. The gravity law has been employed in various 
forms for over a century [19, 20], but as with many such 
laws, its theoretical underpinning comes in many forms 
(see below). Gravity laws generally describe the attractive 
force between two entities and has been used to describe 

to flow of a wide variety of goods (e.g. vehicles, goods, dis-
ease, and human beings) [21–24] and information (e.g. tel-
ephone calls and social media messages) [25–27] between 
cities and countries. The law consists of three main param-
eters: the weights of the two nodes (i.e., population P) and 
the rate of decay dependent on their Euclidean separation 
distance d. Continuing with the flow model used previ-
ously, the number of trips from location i to location j:

where [!, "] are parameter exponents and the function of 
distance f(d) can take on many forms depending on the 
context of application. In the most classical gravity law 
case, the form of f(d) is generally d−2.

A thorough review of gravity laws and complex net-
works can be found in [18]. Almost all research will agree 
that population determines the flow of goods or people 
[28, 29]. The discrepancy between different models lies in 
what form the gravity law takes, especially for the distance 
function f(d), and the parameters that weight the popula-
tion, i.e., ! and ! in Eq. 1. Two studies in particular stand 
out as examples of global trade or good exchange [12, 
22]. For air travel, one of the largest flow studies exam-
ined worldwide commuter traffic [22]. It was found that 
the travel pattern conformed to the following gravity law 
with a distance function f (dij) = exp(−dij∕!) . For below 
300 km, the nodes were asymmetrically weighted (i.e., 
directed links): [! = 0.46, " = 0.64, # = 82 ] . This is perhaps 
accounted for by travelling between home and work. For 
over 300 km, this study and many others like it found that 
flow is nearly symmetric (i.e., undirected) and the parame-
ters are: [! = 0.35, " = 0.37 ] . Other similar air traffic studies 
indicated that for long distance the values for population 
weighting are: ! = " = 0.5 [12]. One challenge with the 
gravity model is its sensitivity to parameterization and the 
following models overcome this.

2.1.2  Radiation model

Inspired by the gravity model, the radiation model [24] 
has recently been proposed to overcome all the aforemen-
tioned limitations. Using mobile data from commuters 
(traveling from home to work), in [24] the authors show 
that the flux is independent of key parameters in the job 
market, namely: (1) benefits of the job, (2) the number 
of jobs available at the location, and (3) the number of 
people Nc . Hence, unlike the gravity model, the radiation 
model is parameter-free. The average flux ⟨Fij⟩ is predicted 
by:

(1)Fij ∝ P!
i
P"
j
f (dij).

(2)⟨Fij⟩ = Fi
PiPj

(Pi + sij)(Pi + Pj + sij)
,
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where Fi = Pi(Nc∕N) denotes the total number of commut-
ers transferring from i to j, and N is the total number of 
people in the country. The parameter sij denotes the popu-
lation within a circle of radius rij that is centred around the 
location i (catchment area).

In general, these pairwise models only consider the attrib-
utes of nodes i and j, and do not bound the overall system 
with energy constraints that would otherwise capture some 
kind of competitive decision making process. Perhaps, the 
local studies (i.e., within cities or countries) do not need to 
consider a high degree of competition, but these models 
cannot be and have not been generalized to larger networks.

2.2  Multi-point entropy maximization models

Pairwise models suffer from the lack of competition between 
nodes [30, 31]. As such, they tend to work for non-compet-
itive interactions and cannot accurately describe the com-
petitiveness nature of the global air transport industry. Multi-
point models consider all possible flows simultaneously and 
attempt to discover the most likely combination.

2.2.1  Boltzmann–Lotka–Volterra (BLV) formulation

We now review the BLV model [17], which has been applied 
to a wide range of competitive scenarios, such as financial 
spending patterns in shopping centres. The BLV model has 
the potential to predict the flow between different nodes of 
the network, given data related to the cost and the benefit 
of having flights between the airports. As such, it can test 
hypotheses related to the impact of changing costs and pas-
senger benefits. Given a fixed number of spatial points (i.e., 
airports), there are a finite number of route configurations. 
Entropy in a spatial configuration context can be defined as 
the likelihood of forming certain combination of links. This is 
the foundation to the BLV model. The formulation is pinned 
on the maximizing the number of micro-states in the net-
work (a term from statistical physics), which gives the most 
likely flow pattern [17]:

where the weighted flow between two arbitrary nodes is 
Fi,j , and F is the total flow in the system. By taking logs and 
using Stirling’s approximation, the above is equivalent to 
maximizing the Shannon entropy S in the system:

At this point, the generic spatial interaction model needs 
to define clear benefit and cost functions. Constraining the 
link weights based on cost functions ci,j (i.e., distance and 

(3)W(Fi,j) =
F!∏
i,j Fi,j!

,

(4)S = −
∑

i,j

Fi,j log(Fi,j).

fuel cost), benefit functions bj (i.e., attractiveness of desti-
nation city Zj ), and fundamental limits (i.e., total capacity of 
airports Xi ), the most likely passenger flow Fi,j can be found 
with Lagrange multipliers ( !, " , # ). The general form of the 
predicted flow is given as [17]:

where the Lagrange multipliers are optimisation param-
eters that weigh each benefit and constraint. The benefit 
and constraint functions are given below for particular 
regional case studies.

2.2.2  Case study: Australia domestic network

Due to the vast computation required to consider a 
global or even a large regional air transport network, we 
consider an isolated and small domestic network such as 
Australia. In particular, we select the 5 largest airports: 
Sydney, Melbourne, Brisbane, Adelaide, and Perth. Given 
known data on the flow between these airports and the 
associated city data, we need to assume right cost-ben-
efit functions and corresponding Lagrange multipliers. 
Reasonable assumptions based on existing literature can 
be developed for the cost-benefit functions. We assume 
that the decision of having flights between two airports 
only depends on the population P and separation dis-
tance d of the nearest cities.

Benefit function Preliminary results show that the 
number Fj of passengers flying to a city j has positive 
correlation with the population Pj of the city j. From that, 
we construct two ways to calculate bj which are in line 
with gravity law equations [24]:

1. Model 1: bj = log Pj,
2. Model 2: bi,j = log(PiPj)

We use both benefit models to predict Fi,j , then we com-
pare the predicted result and real data. We also compare 
the dynamics of Fi,j with the increase and decrease of 
populations Pi of each city i by time.

Cost function Distance as a cost usually appears as a 
gravity law or exponential form, which is used in trans-
portation cost functions [19, 20, 22, 24].

1. Fi,j ∝ d−a
i,j

 , where a = 1, 2 is similar to gravity or radia-
tion law land-based travel models.

2. Fi,j ∝ exp(−di,j) , where this exponential form is similar 
to Levy flight movement of birds and low friction sys-
tems.

(5)Fi,j = Xi
exp (!bj − "ci,j)

∑
k exp (!bj − "ck)

,
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In our study, we assume cost is linearly dependent on the 
distance: ci,j ∝ di,j , such that the flow is proportional to the 
exponential form of the distance Fi,j ∝ exp(−di,j) [see Eq. 
(5)]. In order to find the Lagrange multipliers ! , ! and ! 
such that the outputs Fi,j of our model fit the flights data, 
we minimize the norm of the residual relative to the true 
flow data Fi,jtrue:

where the second term enforces that the diagonal of the 
output is zero for fixed ! > 0 . Since this is a global optimi-
sation problem with a non-convex objective function, one 
cannot achieve perfect convergence, but the output of our 
calibrated model gives good relative number of flights 
between different airports. This means that we need to 
adjust the output of our model by multiplying the results 
by C =

Mdata

Mmodel

 , where Mdata is the true maximum number of 
flights and Mmodel is the predicted maximum number of 
flights between any two of the five cities in our dataset.

Results Figure 2a shows the passenger flow F where 
each element Fij is the flow of passenger from airport i to 
airport j. Each row and column corresponds to five dif-
ferent airports that are ordered from Sydney (SYD), Mel-
bourne (MEL), Brisbane (BNE), Perth (PER), and Adelaide 
(ADL). Because each passenger flow is normalised, Fi,j 
ranges from 0 ≤ Fi,j ≤ 1  . Figure 2b is the predicted pas-
senger flow based on the benefit function as model 1: the 
benefit for a passenger to fly to airport j is bj = log Pj . In 
Fig. 2c, we use model 2 (i.e., bi= log PiPj ) to calculate ben-
efit function, and obtain the result. As one can observe, 
model 1 shows better agreement with the Australian air 
transportation data than model 2, with model 1 yielding 
an aggregated normalised flow intensity difference of 0.7 
compared to those of 2.6 for model 2.

(6)
f (!, " , # , zs) = ‖Fi,jtrue − Fi,j‖2

+ $‖diag(Fi,jtrue) − diag(Fi,j)‖2 ,

2.2.3  Future scope for research

The BLV model [17] has the advantage of finding the 
entropy-maximization solution to a competitive network 
flow problem, including the temporal dynamics. How-
ever, the non-convex nature of the BLV model means 
that unless there is native intuition on the benefit and 
cost functions (e.g. based on established studies), then 
discovering the correct function form and the param-
eters is costly. Nonetheless, the BLV model has been 
applied successfully to complex challenges in urban 
retail, mobility [30], and policing.

During this brief analysis of how the BLV model can 
be used to predict future passenger flows (flights), the 
benefit function depends only on the population of 
the cities where the airports are located (destination or 
both), and we modified the input of the model manually 
(the population of one city) in order to predict the future 
flows. If the benefit function would reflect the actual 
capacity of the airport, like we suggest above, then we 
can have a more natural evolution of the model: instead 
of modifying the input Zj to the benefit function, we 
can let it evolve by the following rule: ΔZj = !(Dj − Zj)Zj , 
where Dj =

∑
iFi,j is the total flow to each airport as pre-

dicted by our model. The sign of ΔZj depends on whether 
Dj > Zj (in which case the capacity of the airport should 
grow) or Dj < Zj (in which case the capacity of the airport 
should decline). At each time step, we update Zj by add-
ing ΔZj and then we re-calculate Fi,j for each edge using 
the new benefit Z. For instance, this may understand 
the population and economic dynamics of BRIC coun-
tries and understand the contributing factors to flight 
demand. An even more sophisticated approach would 
take into account both the airport capacity and popula-
tion size, and other socioeconomic data in addition, like 
GDP of the country/city.

Fig. 2  Using entropy-maximization BLV model to predict passenger flow volume. Passenger flow a obtained from real data, b predicted by 
assuming bj = log Pj , and c predicted by assuming bi,j = log(PiPj)
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3  Top-down approach: complex network 
models of air transport

The complexity of the air transport network has led many 
to apply network science to better understand its proper-
ties at macroscopic (network properties), and mesoscopic 
(community properties) levels. Existing work is abundant 
with snap-shot analysis of network structure (i.e., degree 
profile, modularity, closeness). However, longitudinal 
analysis is rare, because the data is expensive to obtain. 
This section will review both existing research and con-
duct longitudinal case studies on sub-regions of the air 
transport network.

3.1  Macroscopic network properties

3.1.1  Previous studies

For macroscopic studies, degree rank, degree distribution 
and betweenness distribution are the most well stud-
ied [1, 32]. Previous studies found that both the degree 
(unweighted) and the betweenness (unweighted) have 
a complementary cumulative distribution that obeys a 
truncated power-law. The normalised gradient (slope) is 
found to be approximately − 1.0 for degree and − 0.9 for 

betweenness [1, 32]. Previous studies have also shown that 
the degree, betweenness, and closeness rank distributions 
of the Chinese air transport network was found to obey an 
exponential distribution [33]. Furthermore, the centrality 
measures are positively correlated with passenger num-
bers, which indicates that airports that are important from 
a network perspective also experience the most number 
of passengers. Another interesting aspect of complex net-
works is the small-world property, which also applies to 
airline networks (clustering coefficient is an order of mag-
nitude higher than the random graph equivalent). Further-
more, it was found that average shortest path d grows with 
log(S) , where S is the number of nodes in the network [1].

3.1.2  Case study: global air transport network in 2015

Centrality distributions Figure 3 shows the complex net-
work of airport (nodes) connected by directed and 
weighted air transport links. Node size reflects weighted 
degree and link line-width indicates number of seats per 
month (aggregated over the flights). (a) global network 
over one example month comprises of 9033 nodes and 
101042 links; and (b) a number of domestic sub-graphs 
(national), which comprises of 9032 nodes and 53496 links.

Figure 3a, b show the normalised cumulative distribu-
tion of the weighted degree and population. The results 

(a) (b) (e) (g)

(c) (d) (f) (h)

Fig. 3  Complex network properties of the global air transport net-
work. a, b The normalised cumulative distribution of the weighted 
degree and population. c–e The rank distribution of the weighted 

degree and population and eigenvector centrality. f–h The corre-
lated centrality values for each airport
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confirm established knowledge that the normalised 
weighted degree (normalised with respect to mean z) 
exhibits a power-law form:

which has been previously confirmed back in 2005 [1, 32]. 
The gradient (slope) a is found to be − 0.81 for our 2015 
data (compared to − 1.00 for 2005 [1]), indicating that 
there is a diffusion of transportation flow towards a larger 
number of highly connected hubs. Similarly, a power-law 
exists in the cumulative distribution of the normalised cit-
ies’ population Pop∕z ), which has been well established at 
both the global and domestic (national) levels.

Centrality correlations Looking further, of particular 
interest in the context of airline networks is the degree 
and betweenness correlation. A high correlation indicates 
the hub–spoke (HS) model, whereby highly connected air-
ports (degree) also act as shortest-path (betweenness) for 
multi-hop routes (see Fig. 3g). In particular, the variance 
is small for hubs, giving confidence to the conclusion. 
Figure 3h looks at the correlation between degree and 
betweenness per link (betweenness/degree). The results 
show that the lower-bound of the scatter plot increases 
the betweenness/degree as degree increases. This shows 
that hubs not only have a lot of shortest paths and con-
nections, but the number of shortest paths per link is also 
higher than non-hub airports. Other results also reinforce 
the notion that hubs can be detected by degree profiling 
and are important. For example, Fig. 3f shows that degree 
is highly correlated with eigenvector centrality, indicating 
that airports with a high number of connections are also 
airports with important connections.

In Fig. 4, we select the top 50 hubs and show a strong 
correlation between degree and betweenness centrality 
(data from 2016). We track the correlation from 1988 to 
2018, showing that the correlation falls towards the late 
90s, but dramatically increases from late 90s to today (cor-
relation increase from 0.47 to 0.85), which corresponds 
to the significant fall in air travel costs to consumers. In 
Sect. 4, we give a more theoretical foundation on what 
factors drive the HS model, and theorize that the cost of 
flight changes have led to an increase in HS model.

Relation to population rank In Fig. 3’s c, d show the rank 
distribution of the weighted degree and population. In 
particular, we note that the data generally obeys an expo-
nential rank distribution

where r is the rank and b is given in Fig. 3d and e. Whilst 
the coefficient of determination (R-squared) values show 
that the exponential distribution can explain 97% and 86% 
of the variations, there exists a King and Pauper effects 
which cannot otherwise be explained by any other known 

(7)P(> Dw∕z) ∝ (Dw∕z)
−a

(8)Dw ∝ exp(−br),

statistical distributions. The first few ranked cities have 
an order of magnitude higher (King effect) air transport 
degree and population. The tail ranked cities have an order 
of magnitude lower (Pauper effect) air transport degree 
and population. This is not observable on the cumula-
tive distribution plots, and is evident in both the global 
graph and within each sub-graph at the domestic level 
(see results in Fig. 5). More interestingly, most of the King 
airports relate to the core of the network and we will dem-
onstrate that the air transport network has a core–periph-
ery structure.

3.2  Mesoscopic network properties

The global network can be de-constructed into different 
sub-graphs. For example, each airline can form a sub-
graph [34], or the links on each continent can be detected 
through community structure analysis (modularity) [1]. In 
[8], a multi-layer network is constructed that comprises of 
major international airlines and low-cost budget airlines in 
Europe. It was found that the degree distribution of each 

Fig. 4  Hub–spoke model using degree-betweenness correlation: a 
hubs tend to have high degree and betweenness correlation (data 
from 2016), and b correlation has evolved to be stronger after 2000
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sub-graph did not necessarily conform to the power-law 
distribution observed at the continental or global scale [1]. 
In general, it was found that major international formed 
connections that contained distribution tails which were 
orders of magnitude higher than the power-law, and 
budget airlines formed connections that had a degree 
tail distribution which was poorly connected, indicating 
a Pauper effect. The robustness [35] of the air transport 
network subject to random removal was tested in [4, 9, 
10, 32], and it was found that the existing network struc-
ture has been designed for efficiency and is not resilient 
against failures or attacks.

3.2.1  Domestic network centrality and relation to wealth

The global air transport network includes both interna-
tional and domestic flights, and the latter can be regarded 
as a set of sub-graphs. Figure 3d and e demonstrated that 
the rank distribution of both the city’s population and air-
port weighted degree fit an exponential distribution. We 
discover that despite the variety of domestic sub-graph 
patterns for different countries (see Fig. 5b–f ), the same 
exponential distributed degree rank also exists in each 
sub-graph alongside the similar exponentially distributed 
population rank. A key observation is that each country’s 
difference between the sub-graphs’ population and air-
port degree rank distributions is correlated with the GDP 
per capita of the country. We measure the difference by 
the ratio of the average area under the graphs, which can 
be interpreted as the average number of flight seats per 
person (data is for per month). Fig. 3a shows that the ratio 
is positively correlated with the GDP per capita i (2015 
world bank) via a power-law relationship ![Dw ]

![Pop]
∝ ig , where 

g is found to be 0.69 and can explain for approximately 

73% of the variations in each domestic sub-graph’s popu-
lation and degree distribution differences. On a statistical 
level, the relationship is intuitive in the sense that indi-
vidual wealth determines the frequency of domestic 
flights and reasonably well understood [36]. However, 
what is less well understood until our discovery is the close 
relationship between the degree and the population rank 
distributions and the universality of the distribution for 
every nation. The higher resolution understanding of the 
distribution means that should new cities be constructed 
or there is a change in the demographics of one region, 
researchers can potentially use the relationship found to 
estimate the resulting adjustments needed in the degree 
distribution and use it as a proxy for network rewiring (i.e., 
plan new flight paths).

3.2.2  Core–periphery structure

An intuitive understanding of a network core often refers 
to a subset of nodes that are densely connected among 
themselves, whilst the periphery is loosely connected to 
the core [37]. There already exists different algorithms to 
detect a core structure based on certain purposes, there-
fore, it is important to choose the appropriate one. The 
core profiling method [38] used here considers the degree 
of nodes in core and the link density within the core. First, 
nodes are ranked based on decreasing order of degree. 
For each node, the number of links k+

r
 that connected with 

nodes having a higher degree than the selected node was 
recorded. After the k+

r
 sequence is generated, the bound-

ary of the core is able to obtain by detecting the peak of 
the sequence, after which k+

r
 decreases steadily. A demon-

stration for the 500 airports is shown in Fig. 7.

(a) (b) (c) (d) (e) (f)

Fig. 5  Domestic air transport network sub-graph centrality dis-
tributions and relation to personal wealth. a The relationship 
between the nation’s cities’ population and airport degree distri-
butions with the national GDP per capita. b–f The domestic sub-

graphs for each country and their population and airport degree 
distributions. Each nation’s GDP per capita rank is given in the 
brackets
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At a domestic sub-graph level, a core–periphery struc-
ture also exists. Figure 6a shows the top 10 countries in 
terms of the GDP, most airports, core size, and relative 
core size. The relationship between each domestic sub-
graph’s core size and the nation’s GDP is shown in Fig. 6b. 
Figure 6c–h show the core–periphery structure for 6 exam-
ple nations in descending order GDP and corresponding 
descending order of core size.

The global air transport network contains a core 
with approximately 80 nodes (less than 1%), whilst the 
remaining 9000 are peripheral nodes. The relatively 
small core size demonstrates the economic efficiency 
of the network, as well as its low robustness to random 
and targeted failures. This has been established previ-
ously in [32], but not done so with the understanding of 
core–periphery structure properties. We compared the 

GDP Most 
Airports

Core Size

USA USA USA

China Australia China

Japan Canada Russia

Germany Brazil Spain

France China Nigeria

Brazil Indonesia France

UK Russia Brazil

Italy Colombia Iran

Russia France Japan

India UK UK

(a)

(b)

United States ($15.5 x 1012)

(c)

China ($7.5 x 1012)

(d)

12 Core 
Nodes

17 Core 
Nodes

8 Core 
Nodes

United Kingdom ($2.6 x 1012)

(e)

Russia ($1.9 x 1012)

7 Core 
Nodes

(f)
Afghanistan ($0.02 x 1012)

1 Core 
Node

(h)

Indonesia ($0.9 x 1012)

5 Core 
Nodes

(g)

Fig. 6  Core–periphery structure of domestic air transport networks. a Table of top 10 ranked countries. b Relation between core size and 
GDP, and c–h six example core–periphery structures for different countries

Fig. 7  Core classification: for 500 airports. X-axis indicates the decreasing degree rank of node, Y-axis is the number of connections it has 
with a higher ranked node ( k+

r
 ), and the red line shows the cut-off between core and periphery classification
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current air transport network to a random network in 
which the nodes are the same, but the links were rewired 
randomly. Therefore, the number of nodes and links, as 
well as the degree distribution were maintained in the 
random network [39]. By comparing the relative core size 
and the core link density between the real network and 
the random networks, we found that the air transport 
networks form more cohesive cores, which results in 
higher stability and topological robustness in the face 
of perturbations (e.g. attacks or failures [40]).

3.2.3  Evolving communities

Communities are a form of mesoscale structure in net-
works. Roughly speaking, they are defined as groups of 
nodes that are densely connected internally and sparsely 
connected to other groups in the network. There are a 
number of ways to detect and define community struc-
tures from the underlying data of air transport. However, 
given the ill-defined nature of network communities, 
selecting a suitable detection method is still discretionary 

to the researcher’s needs and intuition, both in terms of 
computing complexity and data characteristics. Here, in 
Table 1, we present the main general classes of community 
detection methods currently in use across the literature, 
referring to their strengths and weaknesses (Fig. 7).

In this particular case, we used the Louvain method (a 
form of modularity maximization particularly suited for 
large networks) [41]. Crucially, we don’t need to specify the 
number of communities in the network, that is detected 
automatically by the algorithm. In the Fig. 8, we show iden-
tified communities for the US domestic flights network 
in the month of January for three different years: 2016, 
2006, and 1996. Edges in the network are weighted by the 
number of flights in the respective time period. We notice 
that detected communities decrease in number over time, 
and they align with US geographical areas. For example, in 
2016, there are 4 communities consisting of: the East Coast 
and Puerto Rico (purple); the Midwest (red); the South-
East (green); and the Western States, including Alaska and 
Hawaii (blue).

Some structural changes occur over time, especially 
in the south-east United States. One reason for this could 
be the consolidation of regional airlines such as JetBlue, 
which offers many flights along the East Coast and rela-
tively few flights to other regions. Community structure 
is useful for market segmentation based on route density. 
Furthermore, by looking at how communities evolve over 
time, we may be able to pick up changes in the state of 
the market in a particular region. For our US case study, 
more work is necessary to understand how communities 
change over time and what are the factors that drive those 
changes.

Fig. 8  Community structure of flights network in the US in the month of January in three different years: a 2016 (4 communities), and b 
1996 (7 communities). Data from the Bureau of transportation statistics

Table 1  Summary of the main methods for detecting communities 
in complex networks

Detection method Community indicator

Spectral clustering Eigenspace closseness
Modularity optimization Higher link density
Statistical inference Higher link likelihood
Spin–spin interactions Low energy domains
Coupled oscillators Phase synchronization
Markov processes Random walk confinement
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3.2.4  Route changes and classification

Another method for detecting substructures is route clas-
sification. An airline’s network evolves constantly, with 
routes being added and discontinued from year to year 
(see example below for United Airlines). One question is 
whether we can characterize these routes based on fea-
tures such as: distance between origin and destination, 
degree (or weighted degree) of origin and destination (or 
difference between them), and socioeconomic indicators 
of the areas serviced. Ideally, this would give an indication 
of what kind of routes an airline is adding or removing 
from its network.

As a proof-of-concept, we analysed the 10% of the pas-
senger data in the US for the second quarter of the years 
1993–2015. This allows us to estimate the actual travel to 
high accuracy and we can infer results about the weighted 
domestic flight network. While the total air travel has 
increased (see Fig. 9a), there is a clear shift towards longer 
flights (Fig. 9b, c, note the order of the curves). At the same 
time, the total number of different routes has decreased, 
pointing towards an evolution of a hub and spoke struc-
ture. Future research in this promising area can focus on 
developing proprietary unsupervised learning methods 
for classification, with particular attention to churn and the 
relationship between operator type and the flight route.

4  Future of air transport networks

We assume that cities are randomly and uniformly dis-
tributed. The critical assumption is that we assume that 
the number of routes is constant and that we make no 
assumptions on which routes should or shouldn’t exist 
or what the range of a route should be. That means the 
model is a pure theoretical spatial graph, aimed at only 
analyzing its fundamental properties as a function of dis-
tance cost.

For example, if the distance penalty for a flight reduces, 
how will it affect the network properties? To this end, we 
construct a 2-D random geometric graphs (RGG) with a 
Poisson Point Process (random uniform), whereby the 
probability of connect is weighted by, such that Qi,j = Kd−! , 
where K is a normalizing factor (i.e., ticket cost). We 
attempt to construct RGG with a fixed number of nodes 
and links for a fair comparison of centrality metrics. As 
such, the expected number of links E =

∑
i,j Qi,j , yielding 

K = E
∑

i,j d
−!
i,j

 . Therefore, the probability of a link forming is:

(9)Qi,j = E
d−!
i,j

∑
k,ld

−!
k,l

.

The resulting graph tends to vanish for large values of ! 
(i.e., ticket price K is too large to compensate), so E is only 
maintained for certain ! values (from 0 to 3).

In Fig.  10, we show 8 values of ! uniformly distrib-
uted from 0 to 3 (represented by different colours in the 
scatter plot). For a high value of ! (i.e., 2–3), the spatial 
graph shows weak to no correlation between degree 
and betweenness. This indicates that it is better to travel 
point-to-point or not travel by air, and as such well con-
nected (high degree) are not prominent transfer hubs 
(high betweenness). For a low-medium value of ! (i.e., 
0–2), the non-spatial graph shows a strong correlation 
between degree and betweenness. This indicates that 
the hub airports are also the best airports for minimum 
hop transfers. As such, one conclusion that we can draw 
is as follows. Traditionally, the cost of flying was high and 
point-to-point (PP) transportation was prevalent. As the 
cost reduced (especially since 2000s), the structure of the 
network is statistically more likely to move to a hub–spoke 
(HS) network, because large-hubs can afford efficient take-
off and landing and logistics. We can see this trend in the 
data given in Fig 5, where there is a dramatic increase in 
the HS model since 2000 (correlation increase from 0.47 
to 0.85).

This has a profound effect on the design of future air-
crafts, as the PP model would prefer small to medium sized 
aircrafts (e.g. Boeing 777/787 and Airbus A330), whereas a 
HS model would perhaps prefer high-capacity jumbo-jets 
(e.g. Boeing 747 or Airbus A380).

5  Conclusions

Almost half of the world’s population is carried by airlines 
each year, and understanding this mode of transport is 
important from economic and scientific perspectives. In 
this case study paper, we reviewed both bottom-up (max. 
entropy agent model) and top-down (network science) 
approaches to better understand the fundamental science 
behind air transport networks. A summary of key key find-
ings is given in Fig. 11.

In Sect. 2.2, using simple socioeconomic indicators, we 
were able to construct a very accurate entropy-maximiza-
tion interaction model that can predict traffic volume for 
Australia. Using the population and distance functions, the 
spatial interaction model can forward estimate the impact 
of population growth. In Sect. 3.2, using historical data, 
we were able to identify how hubs evolved over time to 
become more influential. In Sect. 4, looking into the future, 
using random graph theory, it seems that reduced flight 
cost will lead to increased hub influence.

Future research will integrate the flow dynamic data 
into the complex network analysis, which can be done 
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Fig. 9  Route classification: a, 
b Cumulative distribution of 
route distance for different 
years. c Number of routes for 
different distance classes



Vol.:(0123456789)

SN Applied Sciences (2019) 1:680 | https://doi.org/10.1007/s42452-019-0702-2 Case Study

either explicitly through differential equation models [42] 
or using passenger flow data as a proxy [43].
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