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Abstract

Almost half of the world’s population is carried by airlines each year, and understanding this mode of transport is impor-
tant from economic and scientific perspectives. In recent years, the increasing availability of data has led to complex
network and agent interaction models which attempt to gain better understanding of the air transport network and
develop forecasts. In this case study paper, we review existing research on two key approaches, namely: (1) a top-down
multi-scale network science approach, and (2) a bottom-up entropy-maximization interaction network approach. Using
simple socioeconomic indicators, we were able to construct a very accurate interaction model that can predict traffic
volume, and the model can forward estimate the impact of population growth or fuel cost. Using network science
approaches, we were able to identify community structures and relate them to economic outputs. We also saw how hubs
evolved over time to become more influential. Looking into the future, using random graph theory, it seems that reduced
flight cost will lead to increased hub influence. The disseminated knowledge in this case study paper will provide both

academics and industry practitioners with steps forward to co-explore the interesting research landscape.

Keywords Air transport network - Complex network - Spatial interaction

1 Introduction

Air transport networks are complex networks that span
across multiple distance scales (from a few km to 10,000
km) and multiplex together over 5000 airline operators
and has strong inter-dependencies with socioeconomic
drivers. The air transport network carry 3.5 bn passengers
per year and generate over 30 m jobs globally. The analysis
of air transport networks to better understand its network
properties goes back for over 10 years [1-4]. Both global
and regional studies have explored their complex network
structure across different network scales [5-7] with multi-
layer analysis [6, 8]. The analysis predominantly focus on
robustness from attacks or failures [9, 10], efficiency [4],
and structural evolution [7]. The air transportation network
is also responsible for the propagation of knowledge and

culture [11], infectious diseases [12-16], and understand-
ing the network properties allows scientists to better esti-
mate the intangible benefits and risks of global transporta-
tion. A detailed review of existing literature will be given in
each relevant section of analysis in this paper.

1.1 Case study outline

This paper summarizes an intense collaboration project
between Airbus (industrial practitioners) and academics
that bring in new complexity methodologies to add new
knowledge value. The goal is to review and explore the
network science and interaction modelling methods that
can be used to gain fundamental understanding into the
complexity of air transport networks.

Two fundamental approaches are tackled in this review:
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e Bottom-up entropy-maximization interaction model,
which considers consumer choice;

e Top-down network science analysis, which seeks to
uncover common statistical patterns and infer latent
knowledge.

The former gives a complex and detailed understanding
of how spatial networks (i.e., flights) form from spatial pro-
cesses (i.e., airports) and what the weight of each edge
(i.e., passenger volume) is with respect to cost (impedes
flow) and benefit (attracts flow) functions that relate to
consumer behaviour. The latter approach gives a statistical
understanding into the fundamental network properties
and how they evolve over time, enabling the application of
generalized network scaling laws that can be used to pre-
dict the future structure of the network. Both the bottom-
up and the top-down approach is of fundamental interest
to network science and industry.

1.2 Data availability and network construction

Several air transport network data sources are available
from academic and commercial databases. One of the
most widely used commercial databases is the purchased
OAG data. This case study paper will use a single month’s
sample in the year 2015, as well as open air transport data
obtained from the US Bureau of Transportation Statistics
to demonstrate results. The spatial resolution of the data
includes 9000 global airports, each geo-tagged with coor-
dinates, and the temporal resolution of the data are every
civilian flight (dis-including cargo flights). Compared to
open data, the purchased data from OAG offers a more
comprehensive list of flights as well as passenger volume
and flight class distribution (e.g. between first, business,
and economy).

In order to construct a network from the data, airports
are represented by nodes and flights are represented
by weighted links. The vast majority of work uses regu-
lar scheduled flights and the seat number of each flight
is used as a weight for the link. True passenger numbers
(load) are commercially sensitive and cannot be obtained
on a global scale. Each node, if connected to another, is
usually a bi-directed connection with equal weighting
(i.e., most flights transverse back and forth). When multi-
ple flights exist between two airports, the total weight is
the sum of the seats available. An example of the network
is shown in Fig. 1.

1.3 Key industrial problems and interest

Industrial practitioners range from aircraft manufactur-
ers to airline operators. Of fundamental interest to both
parties is the future of airline routes, both in terms of
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Fig. 1 Complex network of city nodes (airports) with directed and
weighted air transport links. Node size reflects weighted degree
and link line width indicates number of seats per month. a Global
network comprises of 9033 nodes and 101042 links. b A number of
domestic sub-graphs which comprises of 9032 nodes and 53496
links

their spatial patterns (including multi-hop routes) and
their demand intensity (including temporal fluctuations).
Understanding these patterns allows aircraft manufac-
turers, such as Airbus, to design future aircraft, which
may take up to 20 years and are required to operate
for another 30 years. Generally speaking, the problems
posed by industrial practitioners can be broken down
into the following:

e How do we predict the passenger flow capacity of
existing routes?

e What are the vulnerable points in the network that
can help prioritize redundancy and security [16]?

e How can we categorize air transport networks for dif-
ferent airlines to define their business model?

e How can socioeconomic data help to understand the
future of the network?

Several resolutions are of interest, such as: airline busi-
ness model (i.e., legacy, budget, regional, international),
operational model (i.e., point-to-point, hub-spoke), geo-
graphic region (i.e., developed country, holiday destina-
tions), time-span (i.e., post-disaster, post-merger), and
flight range (i.e., long-haul).
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1.4 Organisation

In Sect. 2, we give a literature review of bottom-up
approaches such as spatial interaction models that have
been applied to different transport scenarios. Focus will be
on both pair-wise models such as the gravity law and the
radiation model, as well as the Boltzmann-Lotka-Volterra
(BLV) competitive interaction model [17]. A small-scale test
case of its application to the air transport network will be
given.

In Sect. 3, we give a review of top-down network sci-
ence analysis on the air transport network. At the macro-
scopic level, we focus on degree distribution and centrality
correlation measures to detect certain airport properties,
as well as small-world network structures and implications
on network resilience to failures. At the mesoscopic level,
we will focus on how community detection, core-periph-
ery profiling, and other methods can be used to identify
network motifs such as hub-spoke structure to help indus-
try understand the network better and design future air-
crafts. Relationship with socioeconomic parameters will
also be reviewed and analysed.

In Sect. 4, we review work on random graph models
and how generic distance and hop-distance cost func-
tions can be used to change the network structure (i.e.,
from random geometric graphs to random graphs). We use
these cost functions to hypothesize on how the network
structure can evolve and what it means for the business
model of aircraft designers.

In the last section, we summarize the bottom-up and
top-down approaches and how future researchers can
move forward in this area to better understand the sci-
ence of air transport networks.

2 Bottom-up approach: spatial interaction
models

2.1 Pairwise models

Pairwise models are free from any global constraints (i.e.,
finite network commuter capacity bounded by total popu-
lation), and as such have low computational complexity.

2.1.1 Gravity law

One method to measure flow is the widely used gravity
law to infer the volume of flow between any two given
cities [18]. The gravity law has been employed in various
forms for over a century [19, 20], but as with many such
laws, its theoretical underpinning comes in many forms
(see below). Gravity laws generally describe the attractive
force between two entities and has been used to describe

to flow of a wide variety of goods (e.g. vehicles, goods, dis-
ease, and human beings) [21-24] and information (e.g. tel-
ephone calls and social media messages) [25-27] between
cities and countries. The law consists of three main param-
eters: the weights of the two nodes (i.e., population P) and
the rate of decay dependent on their Euclidean separation
distance d. Continuing with the flow model used previ-
ously, the number of trips from location i to location j:

Fj « PEPIE(d)). M)

where [«, #] are parameter exponents and the function of
distance f(d) can take on many forms depending on the
context of application. In the most classical gravity law
case, the form of f(d) is generally d=2

A thorough review of gravity laws and complex net-
works can be found in [18]. AlImost all research will agree
that population determines the flow of goods or people
[28, 29]. The discrepancy between different models lies in
what form the gravity law takes, especially for the distance
function f(d), and the parameters that weight the popula-
tion, i.e, a and g in Eq. 1. Two studies in particular stand
out as examples of global trade or good exchange [12,
22]. For air travel, one of the largest flow studies exam-
ined worldwide commuter traffic [22]. It was found that
the travel pattern conformed to the following gravity law
with a distance function f(d;) = exp(—d;/x). For below
300 km, the nodes were asymmetrically weighted (i.e.,
directed links):[@ = 0.46, § = 0.64, k = 82].This is perhaps
accounted for by travelling between home and work. For
over 300 km, this study and many others like it found that
flow is nearly symmetric (i.e., undirected) and the parame-
ters are:[a = 0.35, f = 0.37]. Other similar air traffic studies
indicated that for long distance the values for population
weighting are: @ = = 0.5 [12]. One challenge with the
gravity model is its sensitivity to parameterization and the
following models overcome this.

2.1.2 Radiation model

Inspired by the gravity model, the radiation model [24]
has recently been proposed to overcome all the aforemen-
tioned limitations. Using mobile data from commuters
(traveling from home to work), in [24] the authors show
that the flux is independent of key parameters in the job
market, namely: (1) benefits of the job, (2) the number
of jobs available at the location, and (3) the number of
people N.. Hence, unlike the gravity model, the radiation
model is parameter-free. The average flux (F;) is predicted
by:

PP,

<FI> = Fi ’
P+ 5P, + P, +5,)

()
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where F; = P,(N./N) denotes the total number of commut-
ers transferring from i to j, and N is the total number of
people in the country. The parameter s; denotes the popu-
lation within a circle of radius r; that is centred around the
location i (catchment area).

In general, these pairwise models only consider the attrib-
utes of nodes i and j, and do not bound the overall system
with energy constraints that would otherwise capture some
kind of competitive decision making process. Perhaps, the
local studies (i.e., within cities or countries) do not need to
consider a high degree of competition, but these models
cannot be and have not been generalized to larger networks.

2.2 Multi-point entropy maximization models

Pairwise models suffer from the lack of competition between
nodes [30, 31]. As such, they tend to work for non-compet-
itive interactions and cannot accurately describe the com-
petitiveness nature of the global air transport industry. Multi-
point models consider all possible flows simultaneously and
attempt to discover the most likely combination.

2.2.1 Boltzmann-Lotka-Volterra (BLV) formulation

We now review the BLV model [17], which has been applied
to a wide range of competitive scenarios, such as financial
spending patterns in shopping centres. The BLV model has
the potential to predict the flow between different nodes of
the network, given data related to the cost and the benefit
of having flights between the airports. As such, it can test
hypotheses related to the impact of changing costs and pas-
senger benefits. Given a fixed number of spatial points (i.e.,
airports), there are a finite number of route configurations.
Entropy in a spatial configuration context can be defined as
the likelihood of forming certain combination of links. This is
the foundation to the BLV model. The formulation is pinned
on the maximizing the number of micro-states in the net-
work (a term from statistical physics), which gives the most
likely flow pattern [171]:

W(F i,j) = = (3)

Hi,j F i,j!l
where the weighted flow between two arbitrary nodes is
F;;»and Fis the total flow in the system. By taking logs and
using Stirling’s approximation, the above is equivalent to
maximizing the Shannon entropy S in the system:

S=-— 2, F;;log(F;)). @

At this point, the generic spatial interaction model needs
to define clear benefit and cost functions. Constraining the
link weights based on cost functions Gij (i.e., distance and
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fuel cost), benefit functions bj (i.e., attractiveness of desti-
nation city Z), and fundamental limits (i.e., total capacity of
airports X;), the most likely passenger flow F;; can be found
with Lagrange multipliers (a, 8, y). The general form of the
predicted flow is given as [17]:

£ exp (ab; — fic;))
" iZk exp (abj - ﬂck),

)

where the Lagrange multipliers are optimisation param-
eters that weigh each benefit and constraint. The benefit
and constraint functions are given below for particular
regional case studies.

2.2.2 Case study: Australia domestic network

Due to the vast computation required to consider a
global or even a large regional air transport network, we
consider an isolated and small domestic network such as
Australia. In particular, we select the 5 largest airports:
Sydney, Melbourne, Brisbane, Adelaide, and Perth. Given
known data on the flow between these airports and the
associated city data, we need to assume right cost-ben-
efit functions and corresponding Lagrange multipliers.
Reasonable assumptions based on existing literature can
be developed for the cost-benefit functions. We assume
that the decision of having flights between two airports
only depends on the population P and separation dis-
tance d of the nearest cities.

Benefit function Preliminary results show that the
number F; of passengers flying to a city j has positive
correlation with the population P; of the city j. From that,
we construct two ways to calculate b; which are in line
with gravity law equations [24]:

1. MOdeHbj :IOgP-,
2. Model 2:b;; = log(P,P,)

We use both benefit models to predict F,J, then we com-
pare the predicted result and real data. We also compare
the dynamics of F;; with the increase and decrease of
populations P; of each city i by time.

Cost function Distance as a cost usually appears as a
gravity law or exponential form, which is used in trans-
portation cost functions [19, 20, 22, 24].

1. F,-J- IS d,./‘j", where a = 1,2 is similar to gravity or radia-
tion law land-based travel models.

2. F;; « exp(—d;;), where this exponential form is similar
to Levy flight movement of birds and low friction sys-
tems.
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Fig.2 Using entropy-maximization BLV model to predict passenger flow volume. Passenger flow a obtained from real data, b predicted by

assuming b; = log P;, and ¢ predicted by assuming b;; = log(P;P;)

In our study, we assume cost is linearly dependent on the
distance: ¢;; « d;;, such that the flow is proportional to the
exponential form of the distance F;; o exp(—d;)) [see Eq.
(5)1. In order to find the Lagrange multipliers a, # and y
such that the outputs F;; of our model fit the flights data,
we minimize the norm of the residual relative to the true
flow data F;;

fla,p,v.z,) = IFij... — Fijll2

+ }L||diag(F,~/jtrue ©

) - diag(Fi,j)”z,

where the second term enforces that the diagonal of the
output is zero for fixed 4 > 0. Since this is a global optimi-
sation problem with a non-convex objective function, one
cannot achieve perfect convergence, but the output of our
calibrated model gives good relative number of flights
between different airports. This means that we need to
adjust the output of our model by multiplying the results
by C = “u= where M atq is the true maximum number of

model

flights and M, 4, is the predicted maximum number of
flights between any two of the five cities in our dataset.

Results Figure 2a shows the passenger flow F where
each element F; is the flow of passenger from airport i to
airport j. Each row and column corresponds to five dif-
ferent airports that are ordered from Sydney (SYD), Mel-
bourne (MEL), Brisbane (BNE), Perth (PER), and Adelaide
(ADL). Because each passenger flow is normalised, F,-J-
ranges from 0 < F;; < 1. Figure 2b is the predicted pas-
senger flow based on the benefit function as model 1: the
benefit for a passenger to fly to airport jis b; = log P;. In
Fig. 2c, we use model 2 (i.e, b; = log P,P,) to calculate ben-
efit function, and obtain the result. As one can observe,
model 1 shows better agreement with the Australian air
transportation data than model 2, with model 1 yielding
an aggregated normalised flow intensity difference of 0.7
compared to those of 2.6 for model 2.

2.2.3 Future scope for research

The BLV model [17] has the advantage of finding the
entropy-maximization solution to a competitive network
flow problem, including the temporal dynamics. How-
ever, the non-convex nature of the BLV model means
that unless there is native intuition on the benefit and
cost functions (e.g. based on established studies), then
discovering the correct function form and the param-
eters is costly. Nonetheless, the BLV model has been
applied successfully to complex challenges in urban
retail, mobility [30], and policing.

During this brief analysis of how the BLV model can
be used to predict future passenger flows (flights), the
benefit function depends only on the population of
the cities where the airports are located (destination or
both), and we modified the input of the model manually
(the population of one city) in order to predict the future
flows. If the benefit function would reflect the actual
capacity of the airport, like we suggest above, then we
can have a more natural evolution of the model: instead
of modifying the input Z; to the benefit function, we
can let it evolve by the following rule: AZ; = e(D; — Z)Z,
where D; = > F;;is the total flow to each airport as pre-
dicted by our model. The sign of AZ; depends on whether
D; > Z; (in which case the capacity of the airport should
grow) or D; < Z; (in which case the capacity of the airport
should decline). At each time step, we update Z; by add-
ing AZ; and then we re-calculate F;; for each edge using
the new benefit Z. For instance, this may understand
the population and economic dynamics of BRIC coun-
tries and understand the contributing factors to flight
demand. An even more sophisticated approach would
take into account both the airport capacity and popula-
tion size, and other socioeconomic data in addition, like
GDP of the country/city.
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3 Top-down approach: complex network
models of air transport

The complexity of the air transport network has led many
to apply network science to better understand its proper-
ties at macroscopic (network properties), and mesoscopic
(community properties) levels. Existing work is abundant
with snap-shot analysis of network structure (i.e., degree
profile, modularity, closeness). However, longitudinal
analysis is rare, because the data is expensive to obtain.
This section will review both existing research and con-
duct longitudinal case studies on sub-regions of the air
transport network.

3.1 Macroscopic network properties
3.1.1 Previous studies

For macroscopic studies, degree rank, degree distribution
and betweenness distribution are the most well stud-
ied [1, 32]. Previous studies found that both the degree
(unweighted) and the betweenness (unweighted) have
a complementary cumulative distribution that obeys a
truncated power-law. The normalised gradient (slope) is
found to be approximately — 1.0 for degree and — 0.9 for
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betweenness [1, 32]. Previous studies have also shown that
the degree, betweenness, and closeness rank distributions
of the Chinese air transport network was found to obey an
exponential distribution [33]. Furthermore, the centrality
measures are positively correlated with passenger num-
bers, which indicates that airports that are important from
a network perspective also experience the most number
of passengers. Another interesting aspect of complex net-
works is the small-world property, which also applies to
airline networks (clustering coefficient is an order of mag-
nitude higher than the random graph equivalent). Further-
more, it was found that average shortest path d grows with
log(S), where S is the number of nodes in the network [1].

3.1.2 Case study: global air transport network in 2015

Centrality distributions Figure 3 shows the complex net-
work of airport (nodes) connected by directed and
weighted air transport links. Node size reflects weighted
degree and link line-width indicates number of seats per
month (aggregated over the flights). (a) global network
over one example month comprises of 9033 nodes and
101042 links; and (b) a number of domestic sub-graphs
(national), which comprises of 9032 nodes and 53496 links.

Figure 3a, b show the normalised cumulative distribu-
tion of the weighted degree and population. The results
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confirm established knowledge that the normalised
weighted degree (normalised with respect to mean 2)
exhibits a power-law form:

P(> D, /z) x (D, /2)™® 7)
which has been previously confirmed back in 2005 [1, 32].
The gradient (slope) a is found to be — 0.81 for our 2015
data (compared to — 1.00 for 2005 [1]), indicating that
there is a diffusion of transportation flow towards a larger
number of highly connected hubs. Similarly, a power-law
exists in the cumulative distribution of the normalised cit-
ies’ population Pop/z), which has been well established at
both the global and domestic (national) levels.

Centrality correlations Looking further, of particular
interest in the context of airline networks is the degree
and betweenness correlation. A high correlation indicates
the hub-spoke (HS) model, whereby highly connected air-
ports (degree) also act as shortest-path (betweenness) for
multi-hop routes (see Fig. 3g). In particular, the variance
is small for hubs, giving confidence to the conclusion.
Figure 3h looks at the correlation between degree and
betweenness per link (betweenness/degree). The results
show that the lower-bound of the scatter plot increases
the betweenness/degree as degree increases. This shows
that hubs not only have a lot of shortest paths and con-
nections, but the number of shortest paths per link is also
higher than non-hub airports. Other results also reinforce
the notion that hubs can be detected by degree profiling
and are important. For example, Fig. 3f shows that degree
is highly correlated with eigenvector centrality, indicating
that airports with a high number of connections are also
airports with important connections.

In Fig. 4, we select the top 50 hubs and show a strong
correlation between degree and betweenness centrality
(data from 2016). We track the correlation from 1988 to
2018, showing that the correlation falls towards the late
90s, but dramatically increases from late 90s to today (cor-
relation increase from 0.47 to 0.85), which corresponds
to the significant fall in air travel costs to consumers. In
Sect. 4, we give a more theoretical foundation on what
factors drive the HS model, and theorize that the cost of
flight changes have led to an increase in HS model.

Relation to population rank In Fig. 3's ¢, d show the rank
distribution of the weighted degree and population. In
particular, we note that the data generally obeys an expo-
nential rank distribution

D,, « exp(=br), (8)

where ris the rank and b is given in Fig. 3d and e. Whilst
the coefficient of determination (R-squared) values show
that the exponential distribution can explain 97% and 86%
of the variations, there exists a King and Pauper effects
which cannot otherwise be explained by any other known
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Fig.4 Hub-spoke model using degree-betweenness correlation: a
hubs tend to have high degree and betweenness correlation (data
from 2016), and b correlation has evolved to be stronger after 2000

statistical distributions. The first few ranked cities have
an order of magnitude higher (King effect) air transport
degree and population. The tail ranked cities have an order
of magnitude lower (Pauper effect) air transport degree
and population. This is not observable on the cumula-
tive distribution plots, and is evident in both the global
graph and within each sub-graph at the domestic level
(see results in Fig. 5). More interestingly, most of the King
airports relate to the core of the network and we will dem-
onstrate that the air transport network has a core-periph-
ery structure.

3.2 Mesoscopic network properties

The global network can be de-constructed into different
sub-graphs. For example, each airline can form a sub-
graph [34], or the links on each continent can be detected
through community structure analysis (modularity) [1]. In
[8], a multi-layer network is constructed that comprises of
major international airlines and low-cost budget airlines in
Europe. It was found that the degree distribution of each
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Fig.5 Domestic air transport network sub-graph centrality dis-
tributions and relation to personal wealth. a The relationship
between the nation’s cities’ population and airport degree distri-
butions with the national GDP per capita. b—f The domestic sub-

sub-graph did not necessarily conform to the power-law
distribution observed at the continental or global scale [1].
In general, it was found that major international formed
connections that contained distribution tails which were
orders of magnitude higher than the power-law, and
budget airlines formed connections that had a degree
tail distribution which was poorly connected, indicating
a Pauper effect. The robustness [35] of the air transport
network subject to random removal was tested in [4, 9,
10, 32], and it was found that the existing network struc-
ture has been designed for efficiency and is not resilient
against failures or attacks.

3.2.1 Domestic network centrality and relation to wealth

The global air transport network includes both interna-
tional and domestic flights, and the latter can be regarded
as a set of sub-graphs. Figure 3d and e demonstrated that
the rank distribution of both the city’s population and air-
port weighted degree fit an exponential distribution. We
discover that despite the variety of domestic sub-graph
patterns for different countries (see Fig. 5b-f), the same
exponential distributed degree rank also exists in each
sub-graph alongside the similar exponentially distributed
population rank. A key observation is that each country’s
difference between the sub-graphs’ population and air-
port degree rank distributions is correlated with the GDP
per capita of the country. We measure the difference by
the ratio of the average area under the graphs, which can
be interpreted as the average number of flight seats per
person (data is for per month). Fig. 3a shows that the ratio
is positively correlated with the GDP p?E{Dc]apita i (2015

world bank) via a power-law relationship ElPop] « 19, where

g is found to be 0.69 and can explain for approximately
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Canada (21)

India (122)

Brazil (76)

China (84)

graphs for each country and their population and airport degree
distributions. Each nation’s GDP per capita rank is given in the
brackets

73% of the variations in each domestic sub-graph'’s popu-
lation and degree distribution differences. On a statistical
level, the relationship is intuitive in the sense that indi-
vidual wealth determines the frequency of domestic
flights and reasonably well understood [36]. However,
what is less well understood until our discovery is the close
relationship between the degree and the population rank
distributions and the universality of the distribution for
every nation. The higher resolution understanding of the
distribution means that should new cities be constructed
or there is a change in the demographics of one region,
researchers can potentially use the relationship found to
estimate the resulting adjustments needed in the degree
distribution and use it as a proxy for network rewiring (i.e.,
plan new flight paths).

3.2.2 Core-periphery structure

An intuitive understanding of a network core often refers
to a subset of nodes that are densely connected among
themselves, whilst the periphery is loosely connected to
the core [37]. There already exists different algorithms to
detect a core structure based on certain purposes, there-
fore, it is important to choose the appropriate one. The
core profiling method [38] used here considers the degree
of nodes in core and the link density within the core. First,
nodes are ranked based on decreasing order of degree.
For each node, the number of links k* that connected with
nodes having a higher degree than the selected node was
recorded. After the k' sequence is generated, the bound-
ary of the core is able to obtain by detecting the peak of
the sequence, after which kr+ decreases steadily. A demon-
stration for the 500 airports is shown in Fig. 7.
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(a) United States ($15.5 x 10%2)
USA USA USA
China Australia  China
Japan Canada Russia
Germany Brazil Spain
France China Nigeria
Brazil Indonesia  France
UK Russia Brazil
Italy Colombia Iran
Russia France Japan
India UK UK

GDP vs. Core Airports China ($7.5 x 10%2)

Number of Core Airports

8 9 10 1 12 13 14
GDP, US$ (log scale)

United Kingdom ($2.6 x 10%) Indonesia ($0.9 x 101?)

Russia ($1.9 x 101?) Afghanistan ($0.02 x 10%?)

Fig. 6 Core—periphery structure of domestic air transport networks. a Table of top 10 ranked countries. b Relation between core size and
GDP, and c-h six example core—periphery structures for different countries

Core Nodes

Periphery Nodes

No. of Connections to Higher Degree Nodes

Node Number (Ranked by Descending Degree)

Fig. 7 Core classification: for 500 airports. X-axis indicates the decreasing degree rank of node, Y-axis is the number of connections it has
with a higher ranked node (kr*), and the red line shows the cut-off between core and periphery classification

At a domestic sub-graph level, a core—periphery struc-
ture also exists. Figure 6a shows the top 10 countries in
terms of the GDP, most airports, core size, and relative
core size. The relationship between each domestic sub-
graph’s core size and the nation’s GDP is shown in Fig. 6b.
Figure 6¢c-h show the core—periphery structure for 6 exam-
ple nations in descending order GDP and corresponding
descending order of core size.

The global air transport network contains a core
with approximately 80 nodes (less than 1%), whilst the
remaining 9000 are peripheral nodes. The relatively
small core size demonstrates the economic efficiency
of the network, as well as its low robustness to random
and targeted failures. This has been established previ-
ously in [32], but not done so with the understanding of
core—periphery structure properties. We compared the
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.

~

(a) 1996: 7 Communities

(b) 2006: 4 Communities

Fig. 8 Community structure of flights network in the US in the month of January in three different years: a 2016 (4 communities), and b

1996 (7 communities). Data from the Bureau of transportation statistics

Table 1 Summary of the main methods for detecting communities
in complex networks

Detection method Community indicator

Spectral clustering
Modularity optimization

Eigenspace closseness
Higher link density
Higher link likelihood
Low energy domains

Statistical inference
Spin-spin interactions
Coupled oscillators Phase synchronization

Markov processes Random walk confinement

current air transport network to a random network in
which the nodes are the same, but the links were rewired
randomly. Therefore, the number of nodes and links, as
well as the degree distribution were maintained in the
random network [39]. By comparing the relative core size
and the core link density between the real network and
the random networks, we found that the air transport
networks form more cohesive cores, which results in
higher stability and topological robustness in the face
of perturbations (e.g. attacks or failures [40]).

3.2.3 Evolving communities

Communities are a form of mesoscale structure in net-
works. Roughly speaking, they are defined as groups of
nodes that are densely connected internally and sparsely
connected to other groups in the network. There are a
number of ways to detect and define community struc-
tures from the underlying data of air transport. However,
given the ill-defined nature of network communities,
selecting a suitable detection method is still discretionary
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to the researcher’s needs and intuition, both in terms of
computing complexity and data characteristics. Here, in
Table 1, we present the main general classes of community
detection methods currently in use across the literature,
referring to their strengths and weaknesses (Fig. 7).

In this particular case, we used the Louvain method (a
form of modularity maximization particularly suited for
large networks) [41]. Crucially, we don't need to specify the
number of communities in the network, that is detected
automatically by the algorithm. In the Fig. 8, we show iden-
tified communities for the US domestic flights network
in the month of January for three different years: 2016,
2006, and 1996. Edges in the network are weighted by the
number of flights in the respective time period. We notice
that detected communities decrease in number over time,
and they align with US geographical areas. For example, in
2016, there are 4 communities consisting of: the East Coast
and Puerto Rico (purple); the Midwest (red); the South-
East (green); and the Western States, including Alaska and
Hawaii (blue).

Some structural changes occur over time, especially
in the south-east United States. One reason for this could
be the consolidation of regional airlines such as JetBlue,
which offers many flights along the East Coast and rela-
tively few flights to other regions. Community structure
is useful for market segmentation based on route density.
Furthermore, by looking at how communities evolve over
time, we may be able to pick up changes in the state of
the market in a particular region. For our US case study,
more work is necessary to understand how communities
change over time and what are the factors that drive those
changes.
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3.2.4 Route changes and classification

Another method for detecting substructures is route clas-
sification. An airline’s network evolves constantly, with
routes being added and discontinued from year to year
(see example below for United Airlines). One question is
whether we can characterize these routes based on fea-
tures such as: distance between origin and destination,
degree (or weighted degree) of origin and destination (or
difference between them), and socioeconomic indicators
of the areas serviced. Ideally, this would give an indication
of what kind of routes an airline is adding or removing
from its network.

As a proof-of-concept, we analysed the 10% of the pas-
senger data in the US for the second quarter of the years
1993-2015. This allows us to estimate the actual travel to
high accuracy and we can infer results about the weighted
domestic flight network. While the total air travel has
increased (see Fig. 9a), there is a clear shift towards longer
flights (Fig. 9b, ¢, note the order of the curves). At the same
time, the total number of different routes has decreased,
pointing towards an evolution of a hub and spoke struc-
ture. Future research in this promising area can focus on
developing proprietary unsupervised learning methods
for classification, with particular attention to churn and the
relationship between operator type and the flight route.

4 Future of air transport networks

We assume that cities are randomly and uniformly dis-
tributed. The critical assumption is that we assume that
the number of routes is constant and that we make no
assumptions on which routes should or shouldn't exist
or what the range of a route should be. That means the
model is a pure theoretical spatial graph, aimed at only
analyzing its fundamental properties as a function of dis-
tance cost.

For example, if the distance penalty for a flight reduces,
how will it affect the network properties? To this end, we
construct a 2-D random geometric graphs (RGG) with a
Poisson Point Process (random uniform), whereby the
probability of connect is weighted by, such thatQ;; = Kd™,
where K is a normalizing factor (i.e., ticket cost). We
attempt to construct RGG with a fixed number of nodes
and links for a fair comparison of centrality metrics. As
such, the expected number of links E = ¥, Q; , yielding
K= #.Therefore, the probability of a link forming is:

ij "
.—.(1
C—F—"
N 29 ©

The resulting graph tends to vanish for large values of «
(i.e., ticket price K is too large to compensate), so E is only
maintained for certain « values (from 0 to 3).

In Fig. 10, we show 8 values of a uniformly distrib-
uted from 0 to 3 (represented by different colours in the
scatter plot). For a high value of « (i.e., 2-3), the spatial
graph shows weak to no correlation between degree
and betweenness. This indicates that it is better to travel
point-to-point or not travel by air, and as such well con-
nected (high degree) are not prominent transfer hubs
(high betweenness). For a low-medium value of « (i.e.,
0-2), the non-spatial graph shows a strong correlation
between degree and betweenness. This indicates that
the hub airports are also the best airports for minimum
hop transfers. As such, one conclusion that we can draw
is as follows. Traditionally, the cost of flying was high and
point-to-point (PP) transportation was prevalent. As the
cost reduced (especially since 2000s), the structure of the
network is statistically more likely to move to a hub-spoke
(HS) network, because large-hubs can afford efficient take-
off and landing and logistics. We can see this trend in the
data given in Fig 5, where there is a dramatic increase in
the HS model since 2000 (correlation increase from 0.47
to 0.85).

This has a profound effect on the design of future air-
crafts, as the PP model would prefer small to medium sized
aircrafts (e.g. Boeing 777/787 and Airbus A330), whereas a
HS model would perhaps prefer high-capacity jumbo-jets
(e.g. Boeing 747 or Airbus A380).

5 Conclusions

Almost half of the world’s population is carried by airlines
each year, and understanding this mode of transport is
important from economic and scientific perspectives. In
this case study paper, we reviewed both bottom-up (max.
entropy agent model) and top-down (network science)
approaches to better understand the fundamental science
behind air transport networks. A summary of key key find-
ingsis givenin Fig. 11.

In Sect. 2.2, using simple socioeconomic indicators, we
were able to construct a very accurate entropy-maximiza-
tion interaction model that can predict traffic volume for
Australia. Using the population and distance functions, the
spatial interaction model can forward estimate the impact
of population growth. In Sect. 3.2, using historical data,
we were able to identify how hubs evolved over time to
become more influential. In Sect. 4, looking into the future,
using random graph theory, it seems that reduced flight
cost will lead to increased hub influence.

Future research will integrate the flow dynamic data
into the complex network analysis, which can be done
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Fig. 9 Route classification: a,
b Cumulative distribution of
route distance for different
years. ¢ Number of routes for
different distance classes
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Fig. 10 Relationship between airport degree and betweenness for
random graphs: distance dependent cost function drives the for-
mation of random graphs with spatial to non-spatial characteristics,
resulting in different levels of hub-spoke prominence

Key finding Difference over literature Section and
figures
Competitive spatial interaction can Accounts for competition Section 2.2
predict passenger flow volume dynamics compared to gravity and Fig. 2.
and radiation models
Hub structure becoming more dominant  Novel definition of hub using Section 3.2

since 2000 centrality correlation of degree  and Fig. 5.
and betweenness
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numerical analysis

Section 3.2
and Fig. 6.
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Fuel cost affects the future network Random spatial graph analysis ~ Section 4 and
structure, with low fuel cost preferring using a general distance cost Fig. 10.
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hub-spoke transport

Fig. 11 Summary of key results and advance over literature

either explicitly through differential equation models [42]
or using passenger flow data as a proxy [43].
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